Barry Linnert, Cesar Augusto F. De Rose, Hans-Ulrich Heiss
{"title":"面向最后期限的高性能计算系统资源与作业管理的动态分配策略","authors":"Barry Linnert, Cesar Augusto F. De Rose, Hans-Ulrich Heiss","doi":"10.1002/cpe.8310","DOIUrl":null,"url":null,"abstract":"<p>As high-performance computing (HPC) becomes a tool used in many different workflows, quality of service (QoS) becomes increasingly important. In many cases, this includes the reliable execution of an HPC job and the generation of the results by a certain deadline. The resource and job management system (RJMS) or simply RMS is responsible for receiving the job requests and executing the jobs with a deadline-oriented policy to support the workflows. In this article, we evaluate how well static resource management policies cope with deadline-constrained HPC jobs and explore two variations of a dynamic policy in this context. As the Hilbert curve-based approach used by the SLURM workload manager represents the state-of-the-art in production environments, it was selected as one of the static allocation strategies. The Manhattan median approach as a second allocation strategy was introduced as a research work that aims to minimize the communication overhead of the parallel programs by providing compact partitions more than the Hilbert curve approach. In contrast to the static partitions provided by the Hilbert curve approach and the Manhattan median approach, the leak approach focuses on supporting dynamic runtime behavior of the jobs and assigning nodes of the HPC system on demand at runtime. Since the contiguous leak version also relies on a compact set of nodes, the noncontiguous leak can provide additional nodes at a greater distance from the nodes already used by the job. Our preliminary results clearly show that a dynamic policy is needed to meet the requirements of a modern deadline-oriented RMS scenario.</p>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpe.8310","citationCount":"0","resultStr":"{\"title\":\"Toward a Dynamic Allocation Strategy for Deadline-Oriented Resource and Job Management in HPC Systems\",\"authors\":\"Barry Linnert, Cesar Augusto F. De Rose, Hans-Ulrich Heiss\",\"doi\":\"10.1002/cpe.8310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As high-performance computing (HPC) becomes a tool used in many different workflows, quality of service (QoS) becomes increasingly important. In many cases, this includes the reliable execution of an HPC job and the generation of the results by a certain deadline. The resource and job management system (RJMS) or simply RMS is responsible for receiving the job requests and executing the jobs with a deadline-oriented policy to support the workflows. In this article, we evaluate how well static resource management policies cope with deadline-constrained HPC jobs and explore two variations of a dynamic policy in this context. As the Hilbert curve-based approach used by the SLURM workload manager represents the state-of-the-art in production environments, it was selected as one of the static allocation strategies. The Manhattan median approach as a second allocation strategy was introduced as a research work that aims to minimize the communication overhead of the parallel programs by providing compact partitions more than the Hilbert curve approach. In contrast to the static partitions provided by the Hilbert curve approach and the Manhattan median approach, the leak approach focuses on supporting dynamic runtime behavior of the jobs and assigning nodes of the HPC system on demand at runtime. Since the contiguous leak version also relies on a compact set of nodes, the noncontiguous leak can provide additional nodes at a greater distance from the nodes already used by the job. Our preliminary results clearly show that a dynamic policy is needed to meet the requirements of a modern deadline-oriented RMS scenario.</p>\",\"PeriodicalId\":55214,\"journal\":{\"name\":\"Concurrency and Computation-Practice & Experience\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpe.8310\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation-Practice & Experience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8310\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8310","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Toward a Dynamic Allocation Strategy for Deadline-Oriented Resource and Job Management in HPC Systems
As high-performance computing (HPC) becomes a tool used in many different workflows, quality of service (QoS) becomes increasingly important. In many cases, this includes the reliable execution of an HPC job and the generation of the results by a certain deadline. The resource and job management system (RJMS) or simply RMS is responsible for receiving the job requests and executing the jobs with a deadline-oriented policy to support the workflows. In this article, we evaluate how well static resource management policies cope with deadline-constrained HPC jobs and explore two variations of a dynamic policy in this context. As the Hilbert curve-based approach used by the SLURM workload manager represents the state-of-the-art in production environments, it was selected as one of the static allocation strategies. The Manhattan median approach as a second allocation strategy was introduced as a research work that aims to minimize the communication overhead of the parallel programs by providing compact partitions more than the Hilbert curve approach. In contrast to the static partitions provided by the Hilbert curve approach and the Manhattan median approach, the leak approach focuses on supporting dynamic runtime behavior of the jobs and assigning nodes of the HPC system on demand at runtime. Since the contiguous leak version also relies on a compact set of nodes, the noncontiguous leak can provide additional nodes at a greater distance from the nodes already used by the job. Our preliminary results clearly show that a dynamic policy is needed to meet the requirements of a modern deadline-oriented RMS scenario.
期刊介绍:
Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of:
Parallel and distributed computing;
High-performance computing;
Computational and data science;
Artificial intelligence and machine learning;
Big data applications, algorithms, and systems;
Network science;
Ontologies and semantics;
Security and privacy;
Cloud/edge/fog computing;
Green computing; and
Quantum computing.