Zhengzheng Fu, Zongxi Zhang, Songhai Fan, Tao Cui, Donghui Luo, Yue Yin, Pengfei Meng, Jingke Guo
下载PDF
{"title":"基于仿真分析的Y-Bi-Co氧化物掺杂对ZnO压敏电阻电性能的影响","authors":"Zhengzheng Fu, Zongxi Zhang, Songhai Fan, Tao Cui, Donghui Luo, Yue Yin, Pengfei Meng, Jingke Guo","doi":"10.1002/ces2.10245","DOIUrl":null,"url":null,"abstract":"<p>ZnO varistors doped with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Y</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Y}_2{\\rm O}_3$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Bi</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Bi}_2{\\rm O}_3$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Co</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Co}_2{\\rm O}_3$</annotation>\n </semantics></math> were analyzed for electrical performance, microstructure, phase composition, and elemental distribution using electrical performance testing, scanning electron microscopy, X-ray diffraction, and energy dispersive spectroscopy tests. The best results were obtained with 0.5 mol% <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Y</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Y}_2{\\rm O}_3$</annotation>\n </semantics></math>, 2 mol% <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Bi</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Bi}_2{\\rm O}_3$</annotation>\n </semantics></math>, and 3 mol% <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Co</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Co}_2{\\rm O}_3$</annotation>\n </semantics></math>, yielding a 356 V/mm voltage gradient, 0.9 <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mi>A</mi>\n </mrow>\n <annotation>$\\umu {\\rm A}$</annotation>\n </semantics></math> leakage current, and a nonlinear coefficient of 66.2. The Voronoi network model explained how <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Bi</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Bi}_2{\\rm O}_3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Co</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Co}_2{\\rm O}_3$</annotation>\n </semantics></math> enhance Y-doped varistor performance. Grain size was identified as the primary factor affecting the voltage gradient, while the thick grain boundary phase impedance, the direct contact area ratio, surface state density, and donor density were key factors influencing the nonlinear coefficient and leakage current. The results indicate that doping with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Bi</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Bi}_2{\\rm O}_3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Co</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Co}_2{\\rm O}_3$</annotation>\n </semantics></math> significantly enhances the electrical properties of Y-doped varistors, and simulation methods effectively reveal the effect mechanisms of dopants on the varistors.</p>","PeriodicalId":13948,"journal":{"name":"International Journal of Ceramic Engineering & Science","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ces2.10245","citationCount":"0","resultStr":"{\"title\":\"Influence of Y–Bi–Co oxide doping on electrical performance of ZnO varistors based on simulation analysis\",\"authors\":\"Zhengzheng Fu, Zongxi Zhang, Songhai Fan, Tao Cui, Donghui Luo, Yue Yin, Pengfei Meng, Jingke Guo\",\"doi\":\"10.1002/ces2.10245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>ZnO varistors doped with <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Y</mi>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mi>O</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>${\\\\rm Y}_2{\\\\rm O}_3$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Bi</mi>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mi>O</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>${\\\\rm Bi}_2{\\\\rm O}_3$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Co</mi>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mi>O</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>${\\\\rm Co}_2{\\\\rm O}_3$</annotation>\\n </semantics></math> were analyzed for electrical performance, microstructure, phase composition, and elemental distribution using electrical performance testing, scanning electron microscopy, X-ray diffraction, and energy dispersive spectroscopy tests. The best results were obtained with 0.5 mol% <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Y</mi>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mi>O</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>${\\\\rm Y}_2{\\\\rm O}_3$</annotation>\\n </semantics></math>, 2 mol% <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Bi</mi>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mi>O</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>${\\\\rm Bi}_2{\\\\rm O}_3$</annotation>\\n </semantics></math>, and 3 mol% <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Co</mi>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mi>O</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>${\\\\rm Co}_2{\\\\rm O}_3$</annotation>\\n </semantics></math>, yielding a 356 V/mm voltage gradient, 0.9 <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n <mi>A</mi>\\n </mrow>\\n <annotation>$\\\\umu {\\\\rm A}$</annotation>\\n </semantics></math> leakage current, and a nonlinear coefficient of 66.2. The Voronoi network model explained how <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Bi</mi>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mi>O</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>${\\\\rm Bi}_2{\\\\rm O}_3$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Co</mi>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mi>O</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>${\\\\rm Co}_2{\\\\rm O}_3$</annotation>\\n </semantics></math> enhance Y-doped varistor performance. Grain size was identified as the primary factor affecting the voltage gradient, while the thick grain boundary phase impedance, the direct contact area ratio, surface state density, and donor density were key factors influencing the nonlinear coefficient and leakage current. The results indicate that doping with <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Bi</mi>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mi>O</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>${\\\\rm Bi}_2{\\\\rm O}_3$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Co</mi>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mi>O</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>${\\\\rm Co}_2{\\\\rm O}_3$</annotation>\\n </semantics></math> significantly enhances the electrical properties of Y-doped varistors, and simulation methods effectively reveal the effect mechanisms of dopants on the varistors.</p>\",\"PeriodicalId\":13948,\"journal\":{\"name\":\"International Journal of Ceramic Engineering & Science\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ces2.10245\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Ceramic Engineering & Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ces2.10245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ceramic Engineering & Science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ces2.10245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用