Javier Nicolás Garay-Novillo, José Ángel Ruiz-Masó, Gloria del Solar, José Luis Barra
{"title":"用于乳球菌基因编辑和质粒固化的易固化和 pH 值调节 CRISPR-Cas9 质粒","authors":"Javier Nicolás Garay-Novillo, José Ángel Ruiz-Masó, Gloria del Solar, José Luis Barra","doi":"10.1111/1751-7915.70060","DOIUrl":null,"url":null,"abstract":"<p>In this work, we developed a plasmid-based CRISPR-Cas9 strategy for editing <i>Lactococcus cremoris</i>, which allows easy generation of plasmid-free strains with the desired modification. We constructed versatile shuttle vectors based on the theta-type pAMβ1 promiscuous replicon and p15A <i>ori</i>, expressing both the Cas9 nuclease gene (under pH-regulated promoters derived from P170) and a single-guide RNA for specific targeting (under a strong constitutive promoter). The vectors designed for plasmid targeting were very effective for low- and high-copy-number plasmid curing in <i>L. cremoris</i>, and their targeting efficiency was shown to be tunable by regulating <i>cas9</i> expression. For chromosome editing, we implemented a host-independent method that enhances double-homologous recombination events using plasmids expressing the genes encoding λRed-phage Redβ recombinase and <i>Escherichia coli</i> single-stranded DNA binding protein (EcSSB). By coupling either the endogenous recombination machinery or the Redβ-EcSSB-assisted recombination system with our novel chromosome-targeting CRISPR-Cas9 plasmids, we efficiently generated and selected thousands of gene-edited cells. Examination of the impact of the constructed CRISPR-Cas9 vectors on host fitness revealed no Cas9-associated toxicity, and, remarkably, these vectors exhibited a very high loss rate when growing the bacterial host cells in the absence of selective pressure.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 12","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70060","citationCount":"0","resultStr":"{\"title\":\"Easy-Curing and pH-Regulated CRISPR-Cas9 Plasmids for Gene Editing and Plasmid Curing in Lactococcus cremoris\",\"authors\":\"Javier Nicolás Garay-Novillo, José Ángel Ruiz-Masó, Gloria del Solar, José Luis Barra\",\"doi\":\"10.1111/1751-7915.70060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we developed a plasmid-based CRISPR-Cas9 strategy for editing <i>Lactococcus cremoris</i>, which allows easy generation of plasmid-free strains with the desired modification. We constructed versatile shuttle vectors based on the theta-type pAMβ1 promiscuous replicon and p15A <i>ori</i>, expressing both the Cas9 nuclease gene (under pH-regulated promoters derived from P170) and a single-guide RNA for specific targeting (under a strong constitutive promoter). The vectors designed for plasmid targeting were very effective for low- and high-copy-number plasmid curing in <i>L. cremoris</i>, and their targeting efficiency was shown to be tunable by regulating <i>cas9</i> expression. For chromosome editing, we implemented a host-independent method that enhances double-homologous recombination events using plasmids expressing the genes encoding λRed-phage Redβ recombinase and <i>Escherichia coli</i> single-stranded DNA binding protein (EcSSB). By coupling either the endogenous recombination machinery or the Redβ-EcSSB-assisted recombination system with our novel chromosome-targeting CRISPR-Cas9 plasmids, we efficiently generated and selected thousands of gene-edited cells. Examination of the impact of the constructed CRISPR-Cas9 vectors on host fitness revealed no Cas9-associated toxicity, and, remarkably, these vectors exhibited a very high loss rate when growing the bacterial host cells in the absence of selective pressure.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"17 12\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70060\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70060\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70060","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Easy-Curing and pH-Regulated CRISPR-Cas9 Plasmids for Gene Editing and Plasmid Curing in Lactococcus cremoris
In this work, we developed a plasmid-based CRISPR-Cas9 strategy for editing Lactococcus cremoris, which allows easy generation of plasmid-free strains with the desired modification. We constructed versatile shuttle vectors based on the theta-type pAMβ1 promiscuous replicon and p15A ori, expressing both the Cas9 nuclease gene (under pH-regulated promoters derived from P170) and a single-guide RNA for specific targeting (under a strong constitutive promoter). The vectors designed for plasmid targeting were very effective for low- and high-copy-number plasmid curing in L. cremoris, and their targeting efficiency was shown to be tunable by regulating cas9 expression. For chromosome editing, we implemented a host-independent method that enhances double-homologous recombination events using plasmids expressing the genes encoding λRed-phage Redβ recombinase and Escherichia coli single-stranded DNA binding protein (EcSSB). By coupling either the endogenous recombination machinery or the Redβ-EcSSB-assisted recombination system with our novel chromosome-targeting CRISPR-Cas9 plasmids, we efficiently generated and selected thousands of gene-edited cells. Examination of the impact of the constructed CRISPR-Cas9 vectors on host fitness revealed no Cas9-associated toxicity, and, remarkably, these vectors exhibited a very high loss rate when growing the bacterial host cells in the absence of selective pressure.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes