Christian Ndeke Bipongo, Marco Adonis, Ali Almaktoof
{"title":"Real-Time Energy Management System for a Hybrid Renewable Microgrid System","authors":"Christian Ndeke Bipongo, Marco Adonis, Ali Almaktoof","doi":"10.1002/ese3.1966","DOIUrl":null,"url":null,"abstract":"<p>This paper gives a detailed study for the design and implementation of an energy management system (EMS) for a hybrid renewable microgrid system using real-time software. Microgrids, with their ability to integrate renewable energy sources, face challenges in maintaining stability and reliability. The implemented EMS aimed to maximize the renewable energy sources utilization, including PV and wind power, in conjunction with a battery energy storage system. The objectives of this research included the implementation of an EMS that ensures a reliable and stable operation between the microgrid system and the main grid including the control of charge and discharge of the battery using Typhoon Hardware-in-the-Loop (HIL) software. The simulation results and case studies demonstrated the effectiveness and performance of the developed EMS in managing a hybrid renewable microgrid system. The results also demonstrated that the time of charging was maximized by utilizing a higher power. By doing so, the battery was fully charged in a shorter timeframe. The battery state of charge (SOC) was maintained between the fixed values (20% and 100%) as stated by the algorithm.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 12","pages":"5542-5554"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1966","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1966","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Real-Time Energy Management System for a Hybrid Renewable Microgrid System
This paper gives a detailed study for the design and implementation of an energy management system (EMS) for a hybrid renewable microgrid system using real-time software. Microgrids, with their ability to integrate renewable energy sources, face challenges in maintaining stability and reliability. The implemented EMS aimed to maximize the renewable energy sources utilization, including PV and wind power, in conjunction with a battery energy storage system. The objectives of this research included the implementation of an EMS that ensures a reliable and stable operation between the microgrid system and the main grid including the control of charge and discharge of the battery using Typhoon Hardware-in-the-Loop (HIL) software. The simulation results and case studies demonstrated the effectiveness and performance of the developed EMS in managing a hybrid renewable microgrid system. The results also demonstrated that the time of charging was maximized by utilizing a higher power. By doing so, the battery was fully charged in a shorter timeframe. The battery state of charge (SOC) was maintained between the fixed values (20% and 100%) as stated by the algorithm.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.