{"title":"控制辅助机器人跟随腰负荷对肌肉疲劳的影响","authors":"Yusuke Yoshida, Takashi Kamezaki, Daisuke Kushida","doi":"10.1002/ecj.12468","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We developed an assist robot that changes its assist force in real time according to the lumbar load estimated from the load information on the hand measured using a hand sensor device and the posture information. Furthermore, using the developed assist robot, the effect of the load-following control on muscle fatigue was verified. The load was set at 6 and 1 kgf, and the amount of muscle activity in the lumbar region was measured using a muscle potential sensor during continuous flexion–extension exercises. The central frequency of the power spectrum was calculated as muscle fatigue, and its time trend was obtained. For comparison, similar experiments were also conducted without an assistive robot and with an existing assistive robot. Consequently, when load-following control was used, muscle fatigue was reduced compared with existing assist robots in which the assist force was excessive in relation to the load. This shows the importance of load-following control that is necessary to control the assist force according to the load when the assist robot is worn during work in which the load changes in a complex manner.</p>\n </div>","PeriodicalId":50539,"journal":{"name":"Electronics and Communications in Japan","volume":"107 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Controlling Assist Robots to Follow Lumbar Load on Muscle Fatigue\",\"authors\":\"Yusuke Yoshida, Takashi Kamezaki, Daisuke Kushida\",\"doi\":\"10.1002/ecj.12468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We developed an assist robot that changes its assist force in real time according to the lumbar load estimated from the load information on the hand measured using a hand sensor device and the posture information. Furthermore, using the developed assist robot, the effect of the load-following control on muscle fatigue was verified. The load was set at 6 and 1 kgf, and the amount of muscle activity in the lumbar region was measured using a muscle potential sensor during continuous flexion–extension exercises. The central frequency of the power spectrum was calculated as muscle fatigue, and its time trend was obtained. For comparison, similar experiments were also conducted without an assistive robot and with an existing assistive robot. Consequently, when load-following control was used, muscle fatigue was reduced compared with existing assist robots in which the assist force was excessive in relation to the load. This shows the importance of load-following control that is necessary to control the assist force according to the load when the assist robot is worn during work in which the load changes in a complex manner.</p>\\n </div>\",\"PeriodicalId\":50539,\"journal\":{\"name\":\"Electronics and Communications in Japan\",\"volume\":\"107 4\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics and Communications in Japan\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12468\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12468","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Effects of Controlling Assist Robots to Follow Lumbar Load on Muscle Fatigue
We developed an assist robot that changes its assist force in real time according to the lumbar load estimated from the load information on the hand measured using a hand sensor device and the posture information. Furthermore, using the developed assist robot, the effect of the load-following control on muscle fatigue was verified. The load was set at 6 and 1 kgf, and the amount of muscle activity in the lumbar region was measured using a muscle potential sensor during continuous flexion–extension exercises. The central frequency of the power spectrum was calculated as muscle fatigue, and its time trend was obtained. For comparison, similar experiments were also conducted without an assistive robot and with an existing assistive robot. Consequently, when load-following control was used, muscle fatigue was reduced compared with existing assist robots in which the assist force was excessive in relation to the load. This shows the importance of load-following control that is necessary to control the assist force according to the load when the assist robot is worn during work in which the load changes in a complex manner.
期刊介绍:
Electronics and Communications in Japan (ECJ) publishes papers translated from the Transactions of the Institute of Electrical Engineers of Japan 12 times per year as an official journal of the Institute of Electrical Engineers of Japan (IEEJ). ECJ aims to provide world-class researches in highly diverse and sophisticated areas of Electrical and Electronic Engineering as well as in related disciplines with emphasis on electronic circuits, controls and communications. ECJ focuses on the following fields:
- Electronic theory and circuits,
- Control theory,
- Communications,
- Cryptography,
- Biomedical fields,
- Surveillance,
- Robotics,
- Sensors and actuators,
- Micromachines,
- Image analysis and signal analysis,
- New materials.
For works related to the science, technology, and applications of electric power, please refer to the sister journal Electrical Engineering in Japan (EEJ).