量子态兼容性问题的最大熵方法

IF 4.4 Q1 OPTICS
Shi-Yao Hou, Zipeng Wu, Jinfeng Zeng, Ningping Cao, Chenfeng Cao, Youning Li, Bei Zeng
{"title":"量子态兼容性问题的最大熵方法","authors":"Shi-Yao Hou,&nbsp;Zipeng Wu,&nbsp;Jinfeng Zeng,&nbsp;Ningping Cao,&nbsp;Chenfeng Cao,&nbsp;Youning Li,&nbsp;Bei Zeng","doi":"10.1002/qute.202400172","DOIUrl":null,"url":null,"abstract":"<p>Inferring a quantum system from incomplete information is a common problem in many aspects of quantum information science and applications, where the principle of maximum entropy (MaxEnt) plays an important role. The quantum state compatibility problem asks whether there exists a density matrix <span></span><math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math> compatible with some given measurement results. Such a compatibility problem can be naturally formulated as a semidefinite programming (SDP), which searches directly for the existence of a <span></span><math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math>. However, for large system dimensions, it is hard to represent <span></span><math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math> directly, since it requires too many parameters. In this work, MaxEnt is applied to solve various quantum state compatibility problems, including the quantum marginal problem. An immediate advantage of the MaxEnt method is that it only needs to represent <span></span><math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math> via a relatively small number of parameters, which is exactly the number of the operators measured. Furthermore, in case of incompatible measurement results, the method will further return a witness that is a supporting hyperplane of the compatible set. The method has a clear geometric meaning and can be computed effectively with hybrid quantum-classical algorithms.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Entropy Methods for Quantum State Compatibility Problems\",\"authors\":\"Shi-Yao Hou,&nbsp;Zipeng Wu,&nbsp;Jinfeng Zeng,&nbsp;Ningping Cao,&nbsp;Chenfeng Cao,&nbsp;Youning Li,&nbsp;Bei Zeng\",\"doi\":\"10.1002/qute.202400172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inferring a quantum system from incomplete information is a common problem in many aspects of quantum information science and applications, where the principle of maximum entropy (MaxEnt) plays an important role. The quantum state compatibility problem asks whether there exists a density matrix <span></span><math>\\n <semantics>\\n <mi>ρ</mi>\\n <annotation>$\\\\rho$</annotation>\\n </semantics></math> compatible with some given measurement results. Such a compatibility problem can be naturally formulated as a semidefinite programming (SDP), which searches directly for the existence of a <span></span><math>\\n <semantics>\\n <mi>ρ</mi>\\n <annotation>$\\\\rho$</annotation>\\n </semantics></math>. However, for large system dimensions, it is hard to represent <span></span><math>\\n <semantics>\\n <mi>ρ</mi>\\n <annotation>$\\\\rho$</annotation>\\n </semantics></math> directly, since it requires too many parameters. In this work, MaxEnt is applied to solve various quantum state compatibility problems, including the quantum marginal problem. An immediate advantage of the MaxEnt method is that it only needs to represent <span></span><math>\\n <semantics>\\n <mi>ρ</mi>\\n <annotation>$\\\\rho$</annotation>\\n </semantics></math> via a relatively small number of parameters, which is exactly the number of the operators measured. Furthermore, in case of incompatible measurement results, the method will further return a witness that is a supporting hyperplane of the compatible set. The method has a clear geometric meaning and can be computed effectively with hybrid quantum-classical algorithms.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":\"7 12\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

从不完全信息中推断量子系统是量子信息科学和应用中许多方面的常见问题,其中最大熵原理(MaxEnt)起着重要作用。量子态兼容性问题是指是否存在一个密度矩阵ρ $\rho$与某些给定的测量结果兼容。这种兼容性问题可以很自然地表述为半确定规划(SDP),它直接搜索ρ $\rho$的存在性。然而,对于大的系统维度,很难直接表示ρ $\rho$,因为它需要太多的参数。在这项工作中,MaxEnt应用于解决各种量子态兼容问题,包括量子边际问题。MaxEnt方法的一个直接优点是,它只需要通过相对较少的参数来表示ρ $\rho$,这正是测量的算子的数量。此外,当测量结果不兼容时,该方法还将返回一个见证,该见证是兼容集的一个支持超平面。该方法几何意义清晰,可以用混合量子经典算法进行有效计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Maximum Entropy Methods for Quantum State Compatibility Problems

Maximum Entropy Methods for Quantum State Compatibility Problems

Inferring a quantum system from incomplete information is a common problem in many aspects of quantum information science and applications, where the principle of maximum entropy (MaxEnt) plays an important role. The quantum state compatibility problem asks whether there exists a density matrix ρ $\rho$ compatible with some given measurement results. Such a compatibility problem can be naturally formulated as a semidefinite programming (SDP), which searches directly for the existence of a ρ $\rho$ . However, for large system dimensions, it is hard to represent ρ $\rho$ directly, since it requires too many parameters. In this work, MaxEnt is applied to solve various quantum state compatibility problems, including the quantum marginal problem. An immediate advantage of the MaxEnt method is that it only needs to represent ρ $\rho$ via a relatively small number of parameters, which is exactly the number of the operators measured. Furthermore, in case of incompatible measurement results, the method will further return a witness that is a supporting hyperplane of the compatible set. The method has a clear geometric meaning and can be computed effectively with hybrid quantum-classical algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信