用最少量易获取的描述符预测na离子超离子导体的室温电导率

IF 6.2 Q2 ENERGY & FUELS
Seong-Hoon Jang, Randy Jalem, Yoshitaka Tateyama
{"title":"用最少量易获取的描述符预测na离子超离子导体的室温电导率","authors":"Seong-Hoon Jang,&nbsp;Randy Jalem,&nbsp;Yoshitaka Tateyama","doi":"10.1002/aesr.202400158","DOIUrl":null,"url":null,"abstract":"<p>Given the vast compositional possibilities <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>Na</mtext>\n </mrow>\n <mi>n</mi>\n </msub>\n <msub>\n <mi>M</mi>\n <mi>m</mi>\n </msub>\n <msubsup>\n <mi>M</mi>\n <msup>\n <mi>m</mi>\n <mo>′</mo>\n </msup>\n <mo>′</mo>\n </msubsup>\n <msub>\n <mrow>\n <mtext>Si</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n <mo>−</mo>\n <mi>p</mi>\n <mo>−</mo>\n <mi>a</mi>\n </mrow>\n </msub>\n <msub>\n <mi>P</mi>\n <mi>p</mi>\n </msub>\n <msub>\n <mrow>\n <mtext>As</mtext>\n </mrow>\n <mi>a</mi>\n </msub>\n <msub>\n <mi>O</mi>\n <mrow>\n <mn>12</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$\\left(\\text{Na}\\right)_{n} \\left(\\text{M}\\right)_{\\text{m}} \\text{M}_{m^{&amp;amp;#x00026;amp;amp;amp;amp;amp;aposx;}}^{&amp;amp;#x00026;amp;amp;amp;amp;amp;aposx;} \\left(\\text{Si}\\right)_{3 - \\text{p} - \\text{a}} \\left(\\text{P}\\right)_{\\text{p}} \\left(\\text{As}\\right)_{\\text{a}} \\left(\\text{O}\\right)_{12}$</annotation>\n </semantics></math>, Na-ion superionic conductors are attractive but complicated for designing materials with enhanced room-temperature Na-ion conductivity <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>σ</mi>\n <mrow>\n <mtext>Na</mtext>\n <mo>,</mo>\n <mn>300</mn>\n <mo> </mo>\n <mi>K</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$\\left(\\sigma\\right)_{\\text{Na} , 300 \\text{K}}$</annotation>\n </semantics></math>. An explicit regression model for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>σ</mi>\n <mrow>\n <mtext>Na</mtext>\n <mo>,</mo>\n <mn>300</mn>\n <mo> </mo>\n <mi>K</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$\\left(\\sigma\\right)_{\\text{Na} , 300 \\text{K}}$</annotation>\n </semantics></math> with easily-accessible descriptors is proposed by exploiting density functional theory molecular dynamics (DFT-MD). Initially, it is demonstrated that two primary descriptors, the bottleneck width along Na-ion diffusion paths <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>d</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation>$d_{1}$</annotation>\n </semantics></math> and the average Na–Na distance <span></span><math>\n <semantics>\n <mrow>\n <mo>⟨</mo>\n <mrow>\n <msub>\n <mi>d</mi>\n <mrow>\n <mtext>Na</mtext>\n <mo>−</mo>\n <mtext>Na</mtext>\n </mrow>\n </msub>\n </mrow>\n <mo>⟩</mo>\n </mrow>\n <annotation>$$ &amp;amp;#x00026;amp;amp;amp;amp;lt;{d}_{\\text{Na}-\\text{Na}}&amp;amp;#x00026;amp;amp;amp;amp;gt;$$</annotation>\n </semantics></math>, modulate room-temperature Na-ion self-diffusion coefficient <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>D</mi>\n <mrow>\n <mtext>Na</mtext>\n <mo>,</mo>\n <mn>300</mn>\n <mo> </mo>\n <mi>K</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$D_{\\text{Na} , 300 \\text{K}}$</annotation>\n </semantics></math>. Then, two secondary easily-accessible descriptors are introduced: Na-ion content <i>n</i>, which influences <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>d</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation>$d_{1}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mo>⟨</mo>\n <mrow>\n <msub>\n <mi>d</mi>\n <mrow>\n <mtext>Na</mtext>\n <mo>−</mo>\n <mtext>Na</mtext>\n </mrow>\n </msub>\n </mrow>\n <mo>⟩</mo>\n </mrow>\n <annotation>$$ &amp;amp;#x00026;amp;amp;amp;amp;lt;{d}_{\\text{Na}-\\text{Na}}&amp;amp;#x00026;amp;amp;amp;amp;gt;$$</annotation>\n </semantics></math>, and Na-ion density <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ρ</mi>\n <mrow>\n <mtext>Na</mtext>\n </mrow>\n </msub>\n </mrow>\n <annotation>$\\left(\\rho\\right)_{\\text{Na}}$</annotation>\n </semantics></math>; and the average ionic radius <span></span><math>\n <semantics>\n <mrow>\n <mo>⟨</mo>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>M</mi>\n </msub>\n </mrow>\n <mo>⟩</mo>\n </mrow>\n <annotation>$$ &amp;amp;#x00026;amp;amp;amp;amp;lt;{r}_{\\text{M}}&amp;amp;#x00026;amp;amp;amp;amp;gt;$$</annotation>\n </semantics></math> of metal ions, which impacts <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>d</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation>$d_{1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>⟨</mo>\n <mrow>\n <msub>\n <mi>d</mi>\n <mrow>\n <mtext>Na</mtext>\n <mo>−</mo>\n <mtext>Na</mtext>\n </mrow>\n </msub>\n </mrow>\n <mo>⟩</mo>\n </mrow>\n <annotation>$$ &amp;amp;#x00026;amp;amp;amp;amp;lt;{d}_{\\text{Na}-\\text{Na}}&amp;amp;#x00026;amp;amp;amp;amp;gt;$$</annotation>\n </semantics></math>. These secondary descriptors enable the development of a regression model for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>σ</mi>\n <mrow>\n <mtext>Na</mtext>\n <mo>,</mo>\n <mn>300</mn>\n <mo> </mo>\n <mi>K</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$\\left(\\sigma\\right)_{\\text{Na} , 300 \\text{K}}$</annotation>\n </semantics></math> with <i>n</i> and <span></span><math>\n <semantics>\n <mrow>\n <mo>⟨</mo>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>M</mi>\n </msub>\n </mrow>\n <mo>⟩</mo>\n </mrow>\n <annotation>$$ &amp;amp;#x00026;amp;amp;amp;amp;lt;{r}_{\\text{M}}&amp;amp;#x00026;amp;amp;amp;amp;gt;$$</annotation>\n </semantics></math> only. Subsequently, this model identifies a promising yet unexplored stable composition, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>Na</mtext>\n </mrow>\n <mrow>\n <mn>2.75</mn>\n </mrow>\n </msub>\n <msub>\n <mrow>\n <mtext>Zr</mtext>\n </mrow>\n <mrow>\n <mn>1.75</mn>\n </mrow>\n </msub>\n <msub>\n <mrow>\n <mtext>Nb</mtext>\n </mrow>\n <mrow>\n <mn>0.25</mn>\n </mrow>\n </msub>\n <msub>\n <mrow>\n <mtext>Si</mtext>\n </mrow>\n <mn>2</mn>\n </msub>\n <msub>\n <mrow>\n <mtext>PO</mtext>\n </mrow>\n <mrow>\n <mn>12</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$\\left(\\text{Na}\\right)_{2.75} \\left(\\text{Zr}\\right)_{1.75} \\left(\\text{Nb}\\right)_{0.25} \\left(\\text{Si}\\right)_{2} \\left(\\text{PO}\\right)_{12}$</annotation>\n </semantics></math>, which, upon DFT-MD calculations, indeed exhibits <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>σ</mi>\n <mrow>\n <mtext>Na</mtext>\n <mo>,</mo>\n <mn>300</mn>\n <mo> </mo>\n <mi>K</mi>\n </mrow>\n </msub>\n <mo>&gt;</mo>\n <msup>\n <mrow>\n <mn>10</mn>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\left(\\sigma\\right)_{\\text{Na} , 300 \\text{K}}&amp;amp;#x00026;amp;amp;amp;amp;gt; \\left(10\\right)^{- 3}$</annotation>\n </semantics></math> S cm<sup>−1</sup>. Furthermore, the adjusted version effectively fits <span></span><math>\n <semantics>\n <mrow>\n <mn>140</mn>\n </mrow>\n <annotation>$140$</annotation>\n </semantics></math> experimental values with <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <mo>=</mo>\n <mn>0.718</mn>\n </mrow>\n <annotation>$R^{2} = 0.718$</annotation>\n </semantics></math>.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"5 12","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400158","citationCount":"0","resultStr":"{\"title\":\"Predicting Room-Temperature Conductivity of Na-Ion Super Ionic Conductors with the Minimal Number of Easily-Accessible Descriptors\",\"authors\":\"Seong-Hoon Jang,&nbsp;Randy Jalem,&nbsp;Yoshitaka Tateyama\",\"doi\":\"10.1002/aesr.202400158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given the vast compositional possibilities <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>Na</mtext>\\n </mrow>\\n <mi>n</mi>\\n </msub>\\n <msub>\\n <mi>M</mi>\\n <mi>m</mi>\\n </msub>\\n <msubsup>\\n <mi>M</mi>\\n <msup>\\n <mi>m</mi>\\n <mo>′</mo>\\n </msup>\\n <mo>′</mo>\\n </msubsup>\\n <msub>\\n <mrow>\\n <mtext>Si</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n <mo>−</mo>\\n <mi>p</mi>\\n <mo>−</mo>\\n <mi>a</mi>\\n </mrow>\\n </msub>\\n <msub>\\n <mi>P</mi>\\n <mi>p</mi>\\n </msub>\\n <msub>\\n <mrow>\\n <mtext>As</mtext>\\n </mrow>\\n <mi>a</mi>\\n </msub>\\n <msub>\\n <mi>O</mi>\\n <mrow>\\n <mn>12</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$\\\\left(\\\\text{Na}\\\\right)_{n} \\\\left(\\\\text{M}\\\\right)_{\\\\text{m}} \\\\text{M}_{m^{&amp;amp;#x00026;amp;amp;amp;amp;amp;aposx;}}^{&amp;amp;#x00026;amp;amp;amp;amp;amp;aposx;} \\\\left(\\\\text{Si}\\\\right)_{3 - \\\\text{p} - \\\\text{a}} \\\\left(\\\\text{P}\\\\right)_{\\\\text{p}} \\\\left(\\\\text{As}\\\\right)_{\\\\text{a}} \\\\left(\\\\text{O}\\\\right)_{12}$</annotation>\\n </semantics></math>, Na-ion superionic conductors are attractive but complicated for designing materials with enhanced room-temperature Na-ion conductivity <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>σ</mi>\\n <mrow>\\n <mtext>Na</mtext>\\n <mo>,</mo>\\n <mn>300</mn>\\n <mo> </mo>\\n <mi>K</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$\\\\left(\\\\sigma\\\\right)_{\\\\text{Na} , 300 \\\\text{K}}$</annotation>\\n </semantics></math>. An explicit regression model for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>σ</mi>\\n <mrow>\\n <mtext>Na</mtext>\\n <mo>,</mo>\\n <mn>300</mn>\\n <mo> </mo>\\n <mi>K</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$\\\\left(\\\\sigma\\\\right)_{\\\\text{Na} , 300 \\\\text{K}}$</annotation>\\n </semantics></math> with easily-accessible descriptors is proposed by exploiting density functional theory molecular dynamics (DFT-MD). Initially, it is demonstrated that two primary descriptors, the bottleneck width along Na-ion diffusion paths <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>d</mi>\\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation>$d_{1}$</annotation>\\n </semantics></math> and the average Na–Na distance <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>⟨</mo>\\n <mrow>\\n <msub>\\n <mi>d</mi>\\n <mrow>\\n <mtext>Na</mtext>\\n <mo>−</mo>\\n <mtext>Na</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n <mo>⟩</mo>\\n </mrow>\\n <annotation>$$ &amp;amp;#x00026;amp;amp;amp;amp;lt;{d}_{\\\\text{Na}-\\\\text{Na}}&amp;amp;#x00026;amp;amp;amp;amp;gt;$$</annotation>\\n </semantics></math>, modulate room-temperature Na-ion self-diffusion coefficient <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>D</mi>\\n <mrow>\\n <mtext>Na</mtext>\\n <mo>,</mo>\\n <mn>300</mn>\\n <mo> </mo>\\n <mi>K</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$D_{\\\\text{Na} , 300 \\\\text{K}}$</annotation>\\n </semantics></math>. Then, two secondary easily-accessible descriptors are introduced: Na-ion content <i>n</i>, which influences <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>d</mi>\\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation>$d_{1}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>⟨</mo>\\n <mrow>\\n <msub>\\n <mi>d</mi>\\n <mrow>\\n <mtext>Na</mtext>\\n <mo>−</mo>\\n <mtext>Na</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n <mo>⟩</mo>\\n </mrow>\\n <annotation>$$ &amp;amp;#x00026;amp;amp;amp;amp;lt;{d}_{\\\\text{Na}-\\\\text{Na}}&amp;amp;#x00026;amp;amp;amp;amp;gt;$$</annotation>\\n </semantics></math>, and Na-ion density <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ρ</mi>\\n <mrow>\\n <mtext>Na</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$\\\\left(\\\\rho\\\\right)_{\\\\text{Na}}$</annotation>\\n </semantics></math>; and the average ionic radius <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>⟨</mo>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n <mi>M</mi>\\n </msub>\\n </mrow>\\n <mo>⟩</mo>\\n </mrow>\\n <annotation>$$ &amp;amp;#x00026;amp;amp;amp;amp;lt;{r}_{\\\\text{M}}&amp;amp;#x00026;amp;amp;amp;amp;gt;$$</annotation>\\n </semantics></math> of metal ions, which impacts <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>d</mi>\\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation>$d_{1}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>⟨</mo>\\n <mrow>\\n <msub>\\n <mi>d</mi>\\n <mrow>\\n <mtext>Na</mtext>\\n <mo>−</mo>\\n <mtext>Na</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n <mo>⟩</mo>\\n </mrow>\\n <annotation>$$ &amp;amp;#x00026;amp;amp;amp;amp;lt;{d}_{\\\\text{Na}-\\\\text{Na}}&amp;amp;#x00026;amp;amp;amp;amp;gt;$$</annotation>\\n </semantics></math>. These secondary descriptors enable the development of a regression model for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>σ</mi>\\n <mrow>\\n <mtext>Na</mtext>\\n <mo>,</mo>\\n <mn>300</mn>\\n <mo> </mo>\\n <mi>K</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$\\\\left(\\\\sigma\\\\right)_{\\\\text{Na} , 300 \\\\text{K}}$</annotation>\\n </semantics></math> with <i>n</i> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>⟨</mo>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n <mi>M</mi>\\n </msub>\\n </mrow>\\n <mo>⟩</mo>\\n </mrow>\\n <annotation>$$ &amp;amp;#x00026;amp;amp;amp;amp;lt;{r}_{\\\\text{M}}&amp;amp;#x00026;amp;amp;amp;amp;gt;$$</annotation>\\n </semantics></math> only. Subsequently, this model identifies a promising yet unexplored stable composition, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>Na</mtext>\\n </mrow>\\n <mrow>\\n <mn>2.75</mn>\\n </mrow>\\n </msub>\\n <msub>\\n <mrow>\\n <mtext>Zr</mtext>\\n </mrow>\\n <mrow>\\n <mn>1.75</mn>\\n </mrow>\\n </msub>\\n <msub>\\n <mrow>\\n <mtext>Nb</mtext>\\n </mrow>\\n <mrow>\\n <mn>0.25</mn>\\n </mrow>\\n </msub>\\n <msub>\\n <mrow>\\n <mtext>Si</mtext>\\n </mrow>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mrow>\\n <mtext>PO</mtext>\\n </mrow>\\n <mrow>\\n <mn>12</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$\\\\left(\\\\text{Na}\\\\right)_{2.75} \\\\left(\\\\text{Zr}\\\\right)_{1.75} \\\\left(\\\\text{Nb}\\\\right)_{0.25} \\\\left(\\\\text{Si}\\\\right)_{2} \\\\left(\\\\text{PO}\\\\right)_{12}$</annotation>\\n </semantics></math>, which, upon DFT-MD calculations, indeed exhibits <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>σ</mi>\\n <mrow>\\n <mtext>Na</mtext>\\n <mo>,</mo>\\n <mn>300</mn>\\n <mo> </mo>\\n <mi>K</mi>\\n </mrow>\\n </msub>\\n <mo>&gt;</mo>\\n <msup>\\n <mrow>\\n <mn>10</mn>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mn>3</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\left(\\\\sigma\\\\right)_{\\\\text{Na} , 300 \\\\text{K}}&amp;amp;#x00026;amp;amp;amp;amp;gt; \\\\left(10\\\\right)^{- 3}$</annotation>\\n </semantics></math> S cm<sup>−1</sup>. Furthermore, the adjusted version effectively fits <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>140</mn>\\n </mrow>\\n <annotation>$140$</annotation>\\n </semantics></math> experimental values with <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>=</mo>\\n <mn>0.718</mn>\\n </mrow>\\n <annotation>$R^{2} = 0.718$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":29794,\"journal\":{\"name\":\"Advanced Energy and Sustainability Research\",\"volume\":\"5 12\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400158\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy and Sustainability Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

25}\left(\text{Si}\right)_{2}\$left(\text{PO}\right)_{12}$ ,经过 DFT-MD 计算,它确实显示了 σ Na , 300 K &gt; 10 - 3 $left(\sigma\right)_{text{Na} , 300 \text{K}}&amp;amp;#x00026;amp;amp;amp;amp;amp;gt300 \text{K}}&amp;amp;#x00026;amp;amp;amp;amp;gt; \left(10\right)^{- 3}$ S cm-1。此外,调整后的版本以 R 2 = 0.718 $R^{2} = 0.718$ 有效地拟合了 140 $140$ 的实验值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting Room-Temperature Conductivity of Na-Ion Super Ionic Conductors with the Minimal Number of Easily-Accessible Descriptors

Predicting Room-Temperature Conductivity of Na-Ion Super Ionic Conductors with the Minimal Number of Easily-Accessible Descriptors

Given the vast compositional possibilities Na n M m M m Si 3 p a P p As a O 12 $\left(\text{Na}\right)_{n} \left(\text{M}\right)_{\text{m}} \text{M}_{m^{&amp;#x00026;amp;amp;amp;amp;amp;aposx;}}^{&amp;#x00026;amp;amp;amp;amp;amp;aposx;} \left(\text{Si}\right)_{3 - \text{p} - \text{a}} \left(\text{P}\right)_{\text{p}} \left(\text{As}\right)_{\text{a}} \left(\text{O}\right)_{12}$ , Na-ion superionic conductors are attractive but complicated for designing materials with enhanced room-temperature Na-ion conductivity σ Na , 300 K $\left(\sigma\right)_{\text{Na} , 300 \text{K}}$ . An explicit regression model for σ Na , 300 K $\left(\sigma\right)_{\text{Na} , 300 \text{K}}$ with easily-accessible descriptors is proposed by exploiting density functional theory molecular dynamics (DFT-MD). Initially, it is demonstrated that two primary descriptors, the bottleneck width along Na-ion diffusion paths d 1 $d_{1}$ and the average Na–Na distance d Na Na $$ &amp;#x00026;amp;amp;amp;amp;lt;{d}_{\text{Na}-\text{Na}}&amp;#x00026;amp;amp;amp;amp;gt;$$ , modulate room-temperature Na-ion self-diffusion coefficient D Na , 300 K $D_{\text{Na} , 300 \text{K}}$ . Then, two secondary easily-accessible descriptors are introduced: Na-ion content n, which influences d 1 $d_{1}$ , d Na Na $$ &amp;#x00026;amp;amp;amp;amp;lt;{d}_{\text{Na}-\text{Na}}&amp;#x00026;amp;amp;amp;amp;gt;$$ , and Na-ion density ρ Na $\left(\rho\right)_{\text{Na}}$ ; and the average ionic radius r M $$ &amp;#x00026;amp;amp;amp;amp;lt;{r}_{\text{M}}&amp;#x00026;amp;amp;amp;amp;gt;$$ of metal ions, which impacts d 1 $d_{1}$ and d Na Na $$ &amp;#x00026;amp;amp;amp;amp;lt;{d}_{\text{Na}-\text{Na}}&amp;#x00026;amp;amp;amp;amp;gt;$$ . These secondary descriptors enable the development of a regression model for σ Na , 300 K $\left(\sigma\right)_{\text{Na} , 300 \text{K}}$ with n and r M $$ &amp;#x00026;amp;amp;amp;amp;lt;{r}_{\text{M}}&amp;#x00026;amp;amp;amp;amp;gt;$$ only. Subsequently, this model identifies a promising yet unexplored stable composition, Na 2.75 Zr 1.75 Nb 0.25 Si 2 PO 12 $\left(\text{Na}\right)_{2.75} \left(\text{Zr}\right)_{1.75} \left(\text{Nb}\right)_{0.25} \left(\text{Si}\right)_{2} \left(\text{PO}\right)_{12}$ , which, upon DFT-MD calculations, indeed exhibits σ Na , 300 K > 10 3 $\left(\sigma\right)_{\text{Na} , 300 \text{K}}&amp;#x00026;amp;amp;amp;amp;gt; \left(10\right)^{- 3}$  S cm−1. Furthermore, the adjusted version effectively fits 140 $140$ experimental values with R 2 = 0.718 $R^{2} = 0.718$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
3.40%
发文量
0
期刊介绍: Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields. In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including: CAS: Chemical Abstracts Service (ACS) Directory of Open Access Journals (DOAJ) Emerging Sources Citation Index (Clarivate Analytics) INSPEC (IET) Web of Science (Clarivate Analytics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信