体外血管壁模型:丙烯酸酯末端聚氨酯基聚合物成管状结构的数字光处理

IF 2.5 4区 化学 Q3 POLYMER SCIENCE
Nele Pien, Ianina Pokholenko, Nicolas Deroose, Charlotte Perneel, Rafaelle Vinturelle, Marguerite Meeremans, Diego Mantovani, Sandra Van Vlierberghe, Catharina De Schauwer
{"title":"体外血管壁模型:丙烯酸酯末端聚氨酯基聚合物成管状结构的数字光处理","authors":"Nele Pien,&nbsp;Ianina Pokholenko,&nbsp;Nicolas Deroose,&nbsp;Charlotte Perneel,&nbsp;Rafaelle Vinturelle,&nbsp;Marguerite Meeremans,&nbsp;Diego Mantovani,&nbsp;Sandra Van Vlierberghe,&nbsp;Catharina De Schauwer","doi":"10.1002/macp.202400277","DOIUrl":null,"url":null,"abstract":"<p>Digital light processing (DLP) is emerging as a powerful tool for fabricating tissue engineering (TE) scaffolds, particularly for vascular TE and the development of representative in vitro vascular wall models. For the latter, biomaterials should mimick the biological and mechanical properties of native blood vessels. To fabricate tubular constructs, the DLP-printing process is optimized by exploiting acrylate-endcapped urethane-based (AUP) polymers as the presence of the acrylate end groups render them suitable for DLP printing and desirable mechanical properties arise from the urethane segments. Four AUP variants are synthesized, exploring polyethylene glycol (PEG) and polypropylene glycol (PPG) backbones with varying acrylate functionalities (di-acrylate versus hexa-acrylate), namely UPEG2, UPEG6, UPPG2, and UPPG6. Tubular constructs with precise dimensions and morphology are fabricated. PPG-based AUP polymers exhibit superior computer-aided design/manufacturing (CAD/CAM) mimicry compared to PEG-based derivatives. Construct characterization reveals tunable mechanical properties, with elastic moduli ranging from 45 to 259 kPa, reaching values of the human blood vessels. In particular, UPPG6 shows a two-fold higher elastic modulus compared to UPPG2. All materials show excellent biocompatibility. Additionally, surface modification with gelatin-methacryloyl (GELMA) significantly enhances the cytocompatibility of UPPG2 scaffolds. This study demonstrates the feasibility of fabricating tubular constructs with tunable properties using DLP and AUP polymers.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"225 24","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward In Vitro Vascular Wall Models: Digital Light Processing of Acrylate-Endcapped Urethane-Based Polymers into Tubular Constructs\",\"authors\":\"Nele Pien,&nbsp;Ianina Pokholenko,&nbsp;Nicolas Deroose,&nbsp;Charlotte Perneel,&nbsp;Rafaelle Vinturelle,&nbsp;Marguerite Meeremans,&nbsp;Diego Mantovani,&nbsp;Sandra Van Vlierberghe,&nbsp;Catharina De Schauwer\",\"doi\":\"10.1002/macp.202400277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Digital light processing (DLP) is emerging as a powerful tool for fabricating tissue engineering (TE) scaffolds, particularly for vascular TE and the development of representative in vitro vascular wall models. For the latter, biomaterials should mimick the biological and mechanical properties of native blood vessels. To fabricate tubular constructs, the DLP-printing process is optimized by exploiting acrylate-endcapped urethane-based (AUP) polymers as the presence of the acrylate end groups render them suitable for DLP printing and desirable mechanical properties arise from the urethane segments. Four AUP variants are synthesized, exploring polyethylene glycol (PEG) and polypropylene glycol (PPG) backbones with varying acrylate functionalities (di-acrylate versus hexa-acrylate), namely UPEG2, UPEG6, UPPG2, and UPPG6. Tubular constructs with precise dimensions and morphology are fabricated. PPG-based AUP polymers exhibit superior computer-aided design/manufacturing (CAD/CAM) mimicry compared to PEG-based derivatives. Construct characterization reveals tunable mechanical properties, with elastic moduli ranging from 45 to 259 kPa, reaching values of the human blood vessels. In particular, UPPG6 shows a two-fold higher elastic modulus compared to UPPG2. All materials show excellent biocompatibility. Additionally, surface modification with gelatin-methacryloyl (GELMA) significantly enhances the cytocompatibility of UPPG2 scaffolds. This study demonstrates the feasibility of fabricating tubular constructs with tunable properties using DLP and AUP polymers.</p>\",\"PeriodicalId\":18054,\"journal\":{\"name\":\"Macromolecular Chemistry and Physics\",\"volume\":\"225 24\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Chemistry and Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400277\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Chemistry and Physics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400277","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

数字光处理(DLP)正在成为制造组织工程(TE)支架的有力工具,特别是血管TE和具有代表性的体外血管壁模型的开发。对于后者,生物材料应该模仿天然血管的生物学和力学特性。为了制造管状结构,通过利用丙烯酸酯端盖聚氨酯基(AUP)聚合物来优化DLP打印工艺,因为丙烯酸酯端基的存在使它们适合DLP打印,并且聚氨酯段产生理想的机械性能。合成了四种AUP变体,探索了具有不同丙烯酸酯功能(二丙烯酸酯与六丙烯酸酯)的聚乙二醇(PEG)和聚丙烯乙二醇(PPG)骨架,即UPEG2, UPEG6, UPPG2和UPPG6。具有精确尺寸和形态的管状结构被制造出来。与基于peg的衍生物相比,基于ppg的AUP聚合物具有优越的计算机辅助设计/制造(CAD/CAM)仿真性。结构表征显示可调的机械性能,弹性模量范围从45至259千帕,达到人体血管的值。特别是,与UPPG2相比,UPPG6的弹性模量提高了两倍。所有材料均具有良好的生物相容性。此外,明胶-甲基丙烯酰(GELMA)表面修饰显著提高了UPPG2支架的细胞相容性。本研究证明了使用DLP和AUP聚合物制造具有可调性能的管状结构的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward In Vitro Vascular Wall Models: Digital Light Processing of Acrylate-Endcapped Urethane-Based Polymers into Tubular Constructs

Digital light processing (DLP) is emerging as a powerful tool for fabricating tissue engineering (TE) scaffolds, particularly for vascular TE and the development of representative in vitro vascular wall models. For the latter, biomaterials should mimick the biological and mechanical properties of native blood vessels. To fabricate tubular constructs, the DLP-printing process is optimized by exploiting acrylate-endcapped urethane-based (AUP) polymers as the presence of the acrylate end groups render them suitable for DLP printing and desirable mechanical properties arise from the urethane segments. Four AUP variants are synthesized, exploring polyethylene glycol (PEG) and polypropylene glycol (PPG) backbones with varying acrylate functionalities (di-acrylate versus hexa-acrylate), namely UPEG2, UPEG6, UPPG2, and UPPG6. Tubular constructs with precise dimensions and morphology are fabricated. PPG-based AUP polymers exhibit superior computer-aided design/manufacturing (CAD/CAM) mimicry compared to PEG-based derivatives. Construct characterization reveals tunable mechanical properties, with elastic moduli ranging from 45 to 259 kPa, reaching values of the human blood vessels. In particular, UPPG6 shows a two-fold higher elastic modulus compared to UPPG2. All materials show excellent biocompatibility. Additionally, surface modification with gelatin-methacryloyl (GELMA) significantly enhances the cytocompatibility of UPPG2 scaffolds. This study demonstrates the feasibility of fabricating tubular constructs with tunable properties using DLP and AUP polymers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Chemistry and Physics
Macromolecular Chemistry and Physics 化学-高分子科学
CiteScore
4.30
自引率
4.00%
发文量
278
审稿时长
1.4 months
期刊介绍: Macromolecular Chemistry and Physics publishes in all areas of polymer science - from chemistry, physical chemistry, and physics of polymers to polymers in materials science. Beside an attractive mixture of high-quality Full Papers, Trends, and Highlights, the journal offers a unique article type dedicated to young scientists – Talent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信