基于周围结构识别的一维激光雷达列车绝对定位

IF 0.5 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Kensuke Nagai, Wataru Ohnishi, Takafumi Koseki
{"title":"基于周围结构识别的一维激光雷达列车绝对定位","authors":"Kensuke Nagai,&nbsp;Wataru Ohnishi,&nbsp;Takafumi Koseki","doi":"10.1002/ecj.12464","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Train localization is an essential technology for effective train control. Currently, train localization primarily relies on using track circuits and balises, which are placed along the track to provide precise location information. However, balises have to be placed at intervals of a few kilometers. This increases maintenance costs and makes them vulnerable to being damaged by ice blocks falling from moving trains. Therefore, in this study, we propose a method for absolute train localization based on structure detection and identification using a 1D light detection and ranging (LiDAR) sensor to reduce the number of balises. Structure identification is achieved using scan matching. In the experiments using a car, the proposed method achieved an identification success rate of over 90%. We also considered the effect of raindrops by filtering the measurement data. By testing and analyzing the identification results, we successfully reduced all cases of misidentification.</p>\n </div>","PeriodicalId":50539,"journal":{"name":"Electronics and Communications in Japan","volume":"107 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absolute Train Localization Based on the Identification of Surrounding Structures Using 1D LiDAR Sensor\",\"authors\":\"Kensuke Nagai,&nbsp;Wataru Ohnishi,&nbsp;Takafumi Koseki\",\"doi\":\"10.1002/ecj.12464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Train localization is an essential technology for effective train control. Currently, train localization primarily relies on using track circuits and balises, which are placed along the track to provide precise location information. However, balises have to be placed at intervals of a few kilometers. This increases maintenance costs and makes them vulnerable to being damaged by ice blocks falling from moving trains. Therefore, in this study, we propose a method for absolute train localization based on structure detection and identification using a 1D light detection and ranging (LiDAR) sensor to reduce the number of balises. Structure identification is achieved using scan matching. In the experiments using a car, the proposed method achieved an identification success rate of over 90%. We also considered the effect of raindrops by filtering the measurement data. By testing and analyzing the identification results, we successfully reduced all cases of misidentification.</p>\\n </div>\",\"PeriodicalId\":50539,\"journal\":{\"name\":\"Electronics and Communications in Japan\",\"volume\":\"107 4\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics and Communications in Japan\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12464\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12464","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

列车定位是实现列车有效控制的关键技术。目前,列车定位主要依赖于使用轨道电路和栏杆,它们沿着轨道放置以提供精确的位置信息。然而,炮弹必须每隔几公里放置一次。这增加了维修成本,而且很容易被行驶中的火车落下的冰块损坏。因此,在本研究中,我们提出了一种基于结构检测和识别的列车绝对定位方法,该方法使用1D光探测和测距(LiDAR)传感器来减少balises数量。结构识别是通过扫描匹配实现的。在一辆汽车的实验中,该方法的识别成功率达到90%以上。我们还通过对测量数据的过滤考虑了雨滴的影响。通过测试和分析识别结果,我们成功地减少了所有误识别的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Absolute Train Localization Based on the Identification of Surrounding Structures Using 1D LiDAR Sensor

Train localization is an essential technology for effective train control. Currently, train localization primarily relies on using track circuits and balises, which are placed along the track to provide precise location information. However, balises have to be placed at intervals of a few kilometers. This increases maintenance costs and makes them vulnerable to being damaged by ice blocks falling from moving trains. Therefore, in this study, we propose a method for absolute train localization based on structure detection and identification using a 1D light detection and ranging (LiDAR) sensor to reduce the number of balises. Structure identification is achieved using scan matching. In the experiments using a car, the proposed method achieved an identification success rate of over 90%. We also considered the effect of raindrops by filtering the measurement data. By testing and analyzing the identification results, we successfully reduced all cases of misidentification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronics and Communications in Japan
Electronics and Communications in Japan 工程技术-工程:电子与电气
CiteScore
0.60
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Electronics and Communications in Japan (ECJ) publishes papers translated from the Transactions of the Institute of Electrical Engineers of Japan 12 times per year as an official journal of the Institute of Electrical Engineers of Japan (IEEJ). ECJ aims to provide world-class researches in highly diverse and sophisticated areas of Electrical and Electronic Engineering as well as in related disciplines with emphasis on electronic circuits, controls and communications. ECJ focuses on the following fields: - Electronic theory and circuits, - Control theory, - Communications, - Cryptography, - Biomedical fields, - Surveillance, - Robotics, - Sensors and actuators, - Micromachines, - Image analysis and signal analysis, - New materials. For works related to the science, technology, and applications of electric power, please refer to the sister journal Electrical Engineering in Japan (EEJ).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信