Hongyu Zhao, Junbo Sun, Xiangyu Wang, Yufei Wang, Yang Su, Jun Wang, Li Wang
{"title":"基于变压器网络的三维混凝土打印缺陷实时、高精度监测","authors":"Hongyu Zhao, Junbo Sun, Xiangyu Wang, Yufei Wang, Yang Su, Jun Wang, Li Wang","doi":"10.1016/j.autcon.2024.105925","DOIUrl":null,"url":null,"abstract":"Defects and anomalies during the 3D concrete printing (3DCP) process significantly affect final construction quality. This paper proposes a real-time, high-accuracy method for monitoring defects in the printing process using a transformer-based detector. Despite limited data availability, deep learning-based data augmentation and image processing techniques were employed to enable effective training of this complex transformer model. A range of enhancement strategies was applied to the RT-DETR, resulting in remarkable improvements, including a mAP50 of 98.1 %, mAP50–95 of 68.0 %, and a computation speed of 72 FPS. The enhanced RT-DETR outperformed state-of-the-art detectors such as YOLOv8 and YOLOv7 in detecting defects in 3DCP. Furthermore, the improved RT-DETR was used to analyze the relationships between defect count, size, and printer parameters, providing guidance for operators to fine-tune printer settings and promptly address defects. This monitoring method reduces material waste and minimizes the risk of structural collapse during the printing process.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"14 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time and high-accuracy defect monitoring for 3D concrete printing using transformer networks\",\"authors\":\"Hongyu Zhao, Junbo Sun, Xiangyu Wang, Yufei Wang, Yang Su, Jun Wang, Li Wang\",\"doi\":\"10.1016/j.autcon.2024.105925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Defects and anomalies during the 3D concrete printing (3DCP) process significantly affect final construction quality. This paper proposes a real-time, high-accuracy method for monitoring defects in the printing process using a transformer-based detector. Despite limited data availability, deep learning-based data augmentation and image processing techniques were employed to enable effective training of this complex transformer model. A range of enhancement strategies was applied to the RT-DETR, resulting in remarkable improvements, including a mAP50 of 98.1 %, mAP50–95 of 68.0 %, and a computation speed of 72 FPS. The enhanced RT-DETR outperformed state-of-the-art detectors such as YOLOv8 and YOLOv7 in detecting defects in 3DCP. Furthermore, the improved RT-DETR was used to analyze the relationships between defect count, size, and printer parameters, providing guidance for operators to fine-tune printer settings and promptly address defects. This monitoring method reduces material waste and minimizes the risk of structural collapse during the printing process.\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.autcon.2024.105925\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105925","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Real-time and high-accuracy defect monitoring for 3D concrete printing using transformer networks
Defects and anomalies during the 3D concrete printing (3DCP) process significantly affect final construction quality. This paper proposes a real-time, high-accuracy method for monitoring defects in the printing process using a transformer-based detector. Despite limited data availability, deep learning-based data augmentation and image processing techniques were employed to enable effective training of this complex transformer model. A range of enhancement strategies was applied to the RT-DETR, resulting in remarkable improvements, including a mAP50 of 98.1 %, mAP50–95 of 68.0 %, and a computation speed of 72 FPS. The enhanced RT-DETR outperformed state-of-the-art detectors such as YOLOv8 and YOLOv7 in detecting defects in 3DCP. Furthermore, the improved RT-DETR was used to analyze the relationships between defect count, size, and printer parameters, providing guidance for operators to fine-tune printer settings and promptly address defects. This monitoring method reduces material waste and minimizes the risk of structural collapse during the printing process.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.