日本沿海城市地区的跨界空气污染:SPM-PM2.5和PM2.5的运输模型和正矩阵分解分析

IF 6 2区 工程技术 Q1 ENVIRONMENTAL SCIENCES
Kazunari Onishi, Keiya Yumimoto, Tomoaki Okuda, Akira Fukuike, Teruya Maki, Masanori Nojima, Masato Shinoda, Takeo Nakayama, Youichi Kurozawa, Zentaro Yamagata, Yasunori Kurosaki
{"title":"日本沿海城市地区的跨界空气污染:SPM-PM2.5和PM2.5的运输模型和正矩阵分解分析","authors":"Kazunari Onishi, Keiya Yumimoto, Tomoaki Okuda, Akira Fukuike, Teruya Maki, Masanori Nojima, Masato Shinoda, Takeo Nakayama, Youichi Kurozawa, Zentaro Yamagata, Yasunori Kurosaki","doi":"10.1016/j.uclim.2024.102237","DOIUrl":null,"url":null,"abstract":"Transboundary air pollutants have raised serious health concerns, particularly in regions with minimal local pollution sources. Distinguishing between local pollution and transboundary contributions is crucial for accurately assessing the health risks to local populations. This study aimed to analyze the differences in coarse and fine particulate matter and develop methods to obtain exposure data for epidemiological studies, thereby providing a scientific basis for public health interventions. We collected SPM-PM<ce:inf loc=\"post\">2.5</ce:inf> (physically excluded PM<ce:inf loc=\"post\">2.5</ce:inf> from SPM) and PM<ce:inf loc=\"post\">2.5</ce:inf> samples in Yonago City, a coastal urban area in Tottori Prefecture, Japan, from 19 October 2015 to 25 July 2016 using a novel slit jet impactor (MCAS-SJ). Positive matrix factorization analysis used heavy metal, ion, and carbon concentrations to identify pollutant sources. This study identified four major air pollution events during the sampling period, primarily attributed to transboundary transport. Episode I was dominated by nitric aerosols, Episodes II and III by Asian dust, and Episode IV by sulfate aerosols. An analysis using global chemical transport models and backward trajectories confirmed that these events verified the contribution of transboundary pollution. In conclusion, identifying the impact of transboundary pollution on local air quality enables an accurate risk assessment of populations. This study provides scientific evidence for developing effective public health strategies and preventive measures. Additionally, the methodology used in this study holds the potential for international contributions and future research applications, helping to address air pollution challenges on a broader scale.","PeriodicalId":48626,"journal":{"name":"Urban Climate","volume":"114 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transboundary air pollution in coastal urban area in Japan: Transport model and positive matrix factorization analysis for SPM-PM2.5 and PM2.5\",\"authors\":\"Kazunari Onishi, Keiya Yumimoto, Tomoaki Okuda, Akira Fukuike, Teruya Maki, Masanori Nojima, Masato Shinoda, Takeo Nakayama, Youichi Kurozawa, Zentaro Yamagata, Yasunori Kurosaki\",\"doi\":\"10.1016/j.uclim.2024.102237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transboundary air pollutants have raised serious health concerns, particularly in regions with minimal local pollution sources. Distinguishing between local pollution and transboundary contributions is crucial for accurately assessing the health risks to local populations. This study aimed to analyze the differences in coarse and fine particulate matter and develop methods to obtain exposure data for epidemiological studies, thereby providing a scientific basis for public health interventions. We collected SPM-PM<ce:inf loc=\\\"post\\\">2.5</ce:inf> (physically excluded PM<ce:inf loc=\\\"post\\\">2.5</ce:inf> from SPM) and PM<ce:inf loc=\\\"post\\\">2.5</ce:inf> samples in Yonago City, a coastal urban area in Tottori Prefecture, Japan, from 19 October 2015 to 25 July 2016 using a novel slit jet impactor (MCAS-SJ). Positive matrix factorization analysis used heavy metal, ion, and carbon concentrations to identify pollutant sources. This study identified four major air pollution events during the sampling period, primarily attributed to transboundary transport. Episode I was dominated by nitric aerosols, Episodes II and III by Asian dust, and Episode IV by sulfate aerosols. An analysis using global chemical transport models and backward trajectories confirmed that these events verified the contribution of transboundary pollution. In conclusion, identifying the impact of transboundary pollution on local air quality enables an accurate risk assessment of populations. This study provides scientific evidence for developing effective public health strategies and preventive measures. Additionally, the methodology used in this study holds the potential for international contributions and future research applications, helping to address air pollution challenges on a broader scale.\",\"PeriodicalId\":48626,\"journal\":{\"name\":\"Urban Climate\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Climate\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.uclim.2024.102237\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Climate","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.uclim.2024.102237","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

跨界空气污染物已引发严重的健康问题,尤其是在本地污染源极少的地区。区分本地污染和跨境污染对于准确评估本地人口的健康风险至关重要。本研究旨在分析粗颗粒物和细颗粒物的差异,并为流行病学研究开发获取暴露数据的方法,从而为公共卫生干预提供科学依据。2015年10月19日至2016年7月25日,我们在日本鸟取县沿海城市米子市使用新型狭缝喷射撞击器(MCAS-SJ)采集了SPM-PM2.5(从SPM中物理排除PM2.5)和PM2.5样本。正矩阵因式分解分析使用重金属、离子和碳浓度来识别污染源。这项研究确定了采样期间的四个主要空气污染事件,主要归因于跨境传输。第一集以硝酸气溶胶为主,第二集和第三集以亚洲尘埃为主,第四集以硫酸盐气溶胶为主。利用全球化学传输模型和后向轨迹进行的分析证实,这些事件验证了跨境污染的贡献。总之,确定跨境污染对当地空气质量的影响有助于对人口进行准确的风险评估。这项研究为制定有效的公共卫生战略和预防措施提供了科学依据。此外,本研究中使用的方法还具有国际贡献和未来研究应用的潜力,有助于在更大范围内应对空气污染挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transboundary air pollution in coastal urban area in Japan: Transport model and positive matrix factorization analysis for SPM-PM2.5 and PM2.5
Transboundary air pollutants have raised serious health concerns, particularly in regions with minimal local pollution sources. Distinguishing between local pollution and transboundary contributions is crucial for accurately assessing the health risks to local populations. This study aimed to analyze the differences in coarse and fine particulate matter and develop methods to obtain exposure data for epidemiological studies, thereby providing a scientific basis for public health interventions. We collected SPM-PM2.5 (physically excluded PM2.5 from SPM) and PM2.5 samples in Yonago City, a coastal urban area in Tottori Prefecture, Japan, from 19 October 2015 to 25 July 2016 using a novel slit jet impactor (MCAS-SJ). Positive matrix factorization analysis used heavy metal, ion, and carbon concentrations to identify pollutant sources. This study identified four major air pollution events during the sampling period, primarily attributed to transboundary transport. Episode I was dominated by nitric aerosols, Episodes II and III by Asian dust, and Episode IV by sulfate aerosols. An analysis using global chemical transport models and backward trajectories confirmed that these events verified the contribution of transboundary pollution. In conclusion, identifying the impact of transboundary pollution on local air quality enables an accurate risk assessment of populations. This study provides scientific evidence for developing effective public health strategies and preventive measures. Additionally, the methodology used in this study holds the potential for international contributions and future research applications, helping to address air pollution challenges on a broader scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Urban Climate
Urban Climate Social Sciences-Urban Studies
CiteScore
9.70
自引率
9.40%
发文量
286
期刊介绍: Urban Climate serves the scientific and decision making communities with the publication of research on theory, science and applications relevant to understanding urban climatic conditions and change in relation to their geography and to demographic, socioeconomic, institutional, technological and environmental dynamics and global change. Targeted towards both disciplinary and interdisciplinary audiences, this journal publishes original research papers, comprehensive review articles, book reviews, and short communications on topics including, but not limited to, the following: Urban meteorology and climate[...] Urban environmental pollution[...] Adaptation to global change[...] Urban economic and social issues[...] Research Approaches[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信