使用高性能 LaBr[式略](Ce)闪烁体进行[式略]-[式略]快速计时

IF 14.5 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR
J.-M. Régis, L.M. Fraile, M. Rudigier
{"title":"使用高性能 LaBr[式略](Ce)闪烁体进行[式略]-[式略]快速计时","authors":"J.-M. Régis, L.M. Fraile, M. Rudigier","doi":"10.1016/j.ppnp.2024.104152","DOIUrl":null,"url":null,"abstract":"We present a review of the electronic <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math> “fast-timing” technique in combination with LaBr<mml:math altimg=\"si192.svg\" display=\"inline\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) scintillator detectors. The <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math> fast-timing technique has increased in popularity since the commercial introduction of the LaBr<mml:math altimg=\"si192.svg\" display=\"inline\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) scintillators in 2005. The use of LaBr<mml:math altimg=\"si192.svg\" display=\"inline\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) for measurements of lifetimes of nuclear excited states has rapidly spread out over the world and also the setups have grown from a few detectors to large-scale fast-timing arrays. The LaBr<mml:math altimg=\"si192.svg\" display=\"inline\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) is one of the fastest scintillators available with good relative energy resolution of about 3%. Due to high energy selectivity, lifetimes of nuclear excited states down to 1 ps in the best case can be determined directly via electronic <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math> time-difference measurements. The use of the high-performance LaBr<mml:math altimg=\"si192.svg\" display=\"inline\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) detectors made it possible to systematically investigate the <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math> fast-timing technique over the total dynamic range corresponding to <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-ray energies of 40 keV up to 6.8 MeV with precision of 2(1) ps. A non-linear energy-dependent time difference between the signals of full-energy peak and Compton events is given. Related to this finding, a new procedure to calibrate the time response of full-energy peak events has been introduced as well as time-correction formulae to account for the Compton contributions in the total experimental <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math> time-difference distribution. We present a review of the <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math> fast-timing technique including the performance of the LaBr<mml:math altimg=\"si192.svg\" display=\"inline\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) detectors, the electronic timing principles, the methods to analyze the experimental <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math> time-difference distributions and the possible energy-dependent time deviations that can be observed using the <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math> fast-timing technique with many LaBr<mml:math altimg=\"si192.svg\" display=\"inline\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) detectors. The use of a centrally symmetric detector arrangement with respect to the center of an extended <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-ray emission area reduces any possible energy-dependent time shifts rapidly to negligible values with the number of detectors. Moreover, a transition from the conventional analog to the digital timing technique is observed, worldwide. We present the promising results of nowadays available digitizers, where the programmable timing algorithm is used onboard to extract timing information with comparable or even better accuracy than the use of analog-electronic timing modules.","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"268 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[formula omitted]-[formula omitted] fast timing with high-performance LaBr[formula omitted](Ce) scintillators\",\"authors\":\"J.-M. Régis, L.M. Fraile, M. Rudigier\",\"doi\":\"10.1016/j.ppnp.2024.104152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a review of the electronic <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math> “fast-timing” technique in combination with LaBr<mml:math altimg=\\\"si192.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) scintillator detectors. The <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math> fast-timing technique has increased in popularity since the commercial introduction of the LaBr<mml:math altimg=\\\"si192.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) scintillators in 2005. The use of LaBr<mml:math altimg=\\\"si192.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) for measurements of lifetimes of nuclear excited states has rapidly spread out over the world and also the setups have grown from a few detectors to large-scale fast-timing arrays. The LaBr<mml:math altimg=\\\"si192.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) is one of the fastest scintillators available with good relative energy resolution of about 3%. Due to high energy selectivity, lifetimes of nuclear excited states down to 1 ps in the best case can be determined directly via electronic <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math> time-difference measurements. The use of the high-performance LaBr<mml:math altimg=\\\"si192.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) detectors made it possible to systematically investigate the <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math> fast-timing technique over the total dynamic range corresponding to <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-ray energies of 40 keV up to 6.8 MeV with precision of 2(1) ps. A non-linear energy-dependent time difference between the signals of full-energy peak and Compton events is given. Related to this finding, a new procedure to calibrate the time response of full-energy peak events has been introduced as well as time-correction formulae to account for the Compton contributions in the total experimental <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math> time-difference distribution. We present a review of the <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math> fast-timing technique including the performance of the LaBr<mml:math altimg=\\\"si192.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) detectors, the electronic timing principles, the methods to analyze the experimental <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math> time-difference distributions and the possible energy-dependent time deviations that can be observed using the <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math> fast-timing technique with many LaBr<mml:math altimg=\\\"si192.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) detectors. The use of a centrally symmetric detector arrangement with respect to the center of an extended <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-ray emission area reduces any possible energy-dependent time shifts rapidly to negligible values with the number of detectors. Moreover, a transition from the conventional analog to the digital timing technique is observed, worldwide. We present the promising results of nowadays available digitizers, where the programmable timing algorithm is used onboard to extract timing information with comparable or even better accuracy than the use of analog-electronic timing modules.\",\"PeriodicalId\":412,\"journal\":{\"name\":\"Progress in Particle and Nuclear Physics\",\"volume\":\"268 1\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Particle and Nuclear Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ppnp.2024.104152\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1016/j.ppnp.2024.104152","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了结合LaBr3(Ce)闪烁体探测器的电子γ-γ“快速计时”技术。自2005年LaBr3(Ce)闪烁体商业化以来,γ-γ快速计时技术越来越受欢迎。使用LaBr3(Ce)来测量核激发态的寿命已经迅速在世界范围内传播开来,而且这些装置也从几个探测器发展到大规模的快速计时阵列。LaBr3(Ce)是目前最快的闪烁体之一,具有良好的相对能量分辨率,约为3%。由于高能量选择性,在最好的情况下,核激发态的寿命低至1ps,可以通过电子γ-γ时差测量直接确定。利用高性能的LaBr3(Ce)探测器,可以系统地研究γ-γ快速定时技术在40 keV到6.8 MeV的γ射线能量对应的总动态范围内,精度为2(1)ps。给出了全能量峰和康普顿事件信号之间的非线性能量依赖的时间差异。与这一发现相关,引入了一种校准全能量峰值事件时间响应的新方法,以及时间校正公式,以解释康普顿贡献在总实验γ-γ时差分布中的作用。本文综述了γ-γ快速定时技术,包括LaBr3(Ce)探测器的性能、电子定时原理、实验γ-γ时差分布的分析方法以及使用许多LaBr3(Ce)探测器的γ-γ快速定时技术可以观察到的可能的能量依赖时间偏差。相对于扩展的γ射线发射区域中心的中心对称探测器安排的使用减少了任何可能的能量相关时移,随着探测器数量的增加,可以迅速地忽略不计。此外,在世界范围内,从传统的模拟定时技术向数字定时技术的过渡被观察到。我们介绍了目前可用的数字化仪的有希望的结果,其中可编程时序算法用于板载提取时序信息,其精度与使用模拟电子时序模块相当甚至更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[formula omitted]-[formula omitted] fast timing with high-performance LaBr[formula omitted](Ce) scintillators
We present a review of the electronic γ-γ “fast-timing” technique in combination with LaBr3(Ce) scintillator detectors. The γ-γ fast-timing technique has increased in popularity since the commercial introduction of the LaBr3(Ce) scintillators in 2005. The use of LaBr3(Ce) for measurements of lifetimes of nuclear excited states has rapidly spread out over the world and also the setups have grown from a few detectors to large-scale fast-timing arrays. The LaBr3(Ce) is one of the fastest scintillators available with good relative energy resolution of about 3%. Due to high energy selectivity, lifetimes of nuclear excited states down to 1 ps in the best case can be determined directly via electronic γ-γ time-difference measurements. The use of the high-performance LaBr3(Ce) detectors made it possible to systematically investigate the γ-γ fast-timing technique over the total dynamic range corresponding to γ-ray energies of 40 keV up to 6.8 MeV with precision of 2(1) ps. A non-linear energy-dependent time difference between the signals of full-energy peak and Compton events is given. Related to this finding, a new procedure to calibrate the time response of full-energy peak events has been introduced as well as time-correction formulae to account for the Compton contributions in the total experimental γ-γ time-difference distribution. We present a review of the γ-γ fast-timing technique including the performance of the LaBr3(Ce) detectors, the electronic timing principles, the methods to analyze the experimental γ-γ time-difference distributions and the possible energy-dependent time deviations that can be observed using the γ-γ fast-timing technique with many LaBr3(Ce) detectors. The use of a centrally symmetric detector arrangement with respect to the center of an extended γ-ray emission area reduces any possible energy-dependent time shifts rapidly to negligible values with the number of detectors. Moreover, a transition from the conventional analog to the digital timing technique is observed, worldwide. We present the promising results of nowadays available digitizers, where the programmable timing algorithm is used onboard to extract timing information with comparable or even better accuracy than the use of analog-electronic timing modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Particle and Nuclear Physics
Progress in Particle and Nuclear Physics 物理-物理:核物理
CiteScore
24.50
自引率
3.10%
发文量
41
审稿时长
72 days
期刊介绍: Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信