{"title":"使用高性能 LaBr[式略](Ce)闪烁体进行[式略]-[式略]快速计时","authors":"J.-M. Régis, L.M. Fraile, M. Rudigier","doi":"10.1016/j.ppnp.2024.104152","DOIUrl":null,"url":null,"abstract":"We present a review of the electronic <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math> “fast-timing” technique in combination with LaBr<mml:math altimg=\"si192.svg\" display=\"inline\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) scintillator detectors. The <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math> fast-timing technique has increased in popularity since the commercial introduction of the LaBr<mml:math altimg=\"si192.svg\" display=\"inline\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) scintillators in 2005. The use of LaBr<mml:math altimg=\"si192.svg\" display=\"inline\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) for measurements of lifetimes of nuclear excited states has rapidly spread out over the world and also the setups have grown from a few detectors to large-scale fast-timing arrays. The LaBr<mml:math altimg=\"si192.svg\" display=\"inline\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) is one of the fastest scintillators available with good relative energy resolution of about 3%. Due to high energy selectivity, lifetimes of nuclear excited states down to 1 ps in the best case can be determined directly via electronic <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math> time-difference measurements. The use of the high-performance LaBr<mml:math altimg=\"si192.svg\" display=\"inline\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) detectors made it possible to systematically investigate the <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math> fast-timing technique over the total dynamic range corresponding to <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-ray energies of 40 keV up to 6.8 MeV with precision of 2(1) ps. A non-linear energy-dependent time difference between the signals of full-energy peak and Compton events is given. Related to this finding, a new procedure to calibrate the time response of full-energy peak events has been introduced as well as time-correction formulae to account for the Compton contributions in the total experimental <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math> time-difference distribution. We present a review of the <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math> fast-timing technique including the performance of the LaBr<mml:math altimg=\"si192.svg\" display=\"inline\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) detectors, the electronic timing principles, the methods to analyze the experimental <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math> time-difference distributions and the possible energy-dependent time deviations that can be observed using the <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math> fast-timing technique with many LaBr<mml:math altimg=\"si192.svg\" display=\"inline\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) detectors. The use of a centrally symmetric detector arrangement with respect to the center of an extended <mml:math altimg=\"si85.svg\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math>-ray emission area reduces any possible energy-dependent time shifts rapidly to negligible values with the number of detectors. Moreover, a transition from the conventional analog to the digital timing technique is observed, worldwide. We present the promising results of nowadays available digitizers, where the programmable timing algorithm is used onboard to extract timing information with comparable or even better accuracy than the use of analog-electronic timing modules.","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"268 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[formula omitted]-[formula omitted] fast timing with high-performance LaBr[formula omitted](Ce) scintillators\",\"authors\":\"J.-M. Régis, L.M. Fraile, M. Rudigier\",\"doi\":\"10.1016/j.ppnp.2024.104152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a review of the electronic <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math> “fast-timing” technique in combination with LaBr<mml:math altimg=\\\"si192.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) scintillator detectors. The <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math> fast-timing technique has increased in popularity since the commercial introduction of the LaBr<mml:math altimg=\\\"si192.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) scintillators in 2005. The use of LaBr<mml:math altimg=\\\"si192.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) for measurements of lifetimes of nuclear excited states has rapidly spread out over the world and also the setups have grown from a few detectors to large-scale fast-timing arrays. The LaBr<mml:math altimg=\\\"si192.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) is one of the fastest scintillators available with good relative energy resolution of about 3%. Due to high energy selectivity, lifetimes of nuclear excited states down to 1 ps in the best case can be determined directly via electronic <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math> time-difference measurements. The use of the high-performance LaBr<mml:math altimg=\\\"si192.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) detectors made it possible to systematically investigate the <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math> fast-timing technique over the total dynamic range corresponding to <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-ray energies of 40 keV up to 6.8 MeV with precision of 2(1) ps. A non-linear energy-dependent time difference between the signals of full-energy peak and Compton events is given. Related to this finding, a new procedure to calibrate the time response of full-energy peak events has been introduced as well as time-correction formulae to account for the Compton contributions in the total experimental <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math> time-difference distribution. We present a review of the <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math> fast-timing technique including the performance of the LaBr<mml:math altimg=\\\"si192.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) detectors, the electronic timing principles, the methods to analyze the experimental <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math> time-difference distributions and the possible energy-dependent time deviations that can be observed using the <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-<mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math> fast-timing technique with many LaBr<mml:math altimg=\\\"si192.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>(Ce) detectors. The use of a centrally symmetric detector arrangement with respect to the center of an extended <mml:math altimg=\\\"si85.svg\\\" display=\\\"inline\\\"><mml:mi>γ</mml:mi></mml:math>-ray emission area reduces any possible energy-dependent time shifts rapidly to negligible values with the number of detectors. Moreover, a transition from the conventional analog to the digital timing technique is observed, worldwide. We present the promising results of nowadays available digitizers, where the programmable timing algorithm is used onboard to extract timing information with comparable or even better accuracy than the use of analog-electronic timing modules.\",\"PeriodicalId\":412,\"journal\":{\"name\":\"Progress in Particle and Nuclear Physics\",\"volume\":\"268 1\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Particle and Nuclear Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ppnp.2024.104152\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1016/j.ppnp.2024.104152","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
[formula omitted]-[formula omitted] fast timing with high-performance LaBr[formula omitted](Ce) scintillators
We present a review of the electronic γ-γ “fast-timing” technique in combination with LaBr3(Ce) scintillator detectors. The γ-γ fast-timing technique has increased in popularity since the commercial introduction of the LaBr3(Ce) scintillators in 2005. The use of LaBr3(Ce) for measurements of lifetimes of nuclear excited states has rapidly spread out over the world and also the setups have grown from a few detectors to large-scale fast-timing arrays. The LaBr3(Ce) is one of the fastest scintillators available with good relative energy resolution of about 3%. Due to high energy selectivity, lifetimes of nuclear excited states down to 1 ps in the best case can be determined directly via electronic γ-γ time-difference measurements. The use of the high-performance LaBr3(Ce) detectors made it possible to systematically investigate the γ-γ fast-timing technique over the total dynamic range corresponding to γ-ray energies of 40 keV up to 6.8 MeV with precision of 2(1) ps. A non-linear energy-dependent time difference between the signals of full-energy peak and Compton events is given. Related to this finding, a new procedure to calibrate the time response of full-energy peak events has been introduced as well as time-correction formulae to account for the Compton contributions in the total experimental γ-γ time-difference distribution. We present a review of the γ-γ fast-timing technique including the performance of the LaBr3(Ce) detectors, the electronic timing principles, the methods to analyze the experimental γ-γ time-difference distributions and the possible energy-dependent time deviations that can be observed using the γ-γ fast-timing technique with many LaBr3(Ce) detectors. The use of a centrally symmetric detector arrangement with respect to the center of an extended γ-ray emission area reduces any possible energy-dependent time shifts rapidly to negligible values with the number of detectors. Moreover, a transition from the conventional analog to the digital timing technique is observed, worldwide. We present the promising results of nowadays available digitizers, where the programmable timing algorithm is used onboard to extract timing information with comparable or even better accuracy than the use of analog-electronic timing modules.
期刊介绍:
Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.