超导重力仪观测结果表明,卫星得出的雪深图像改进了对高山地区雪水当量演变的模拟

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
F. Koch, S. Gascoin, K. Achmüller, P. Schattan, K.-F. Wetzel, C. Deschamps-Berger, M. Lehning, T. Rehm, K. Schulz, C. Voigt
{"title":"超导重力仪观测结果表明,卫星得出的雪深图像改进了对高山地区雪水当量演变的模拟","authors":"F. Koch,&nbsp;S. Gascoin,&nbsp;K. Achmüller,&nbsp;P. Schattan,&nbsp;K.-F. Wetzel,&nbsp;C. Deschamps-Berger,&nbsp;M. Lehning,&nbsp;T. Rehm,&nbsp;K. Schulz,&nbsp;C. Voigt","doi":"10.1029/2024GL112483","DOIUrl":null,"url":null,"abstract":"<p>The lack of accurate information on the spatiotemporal variations of snow water equivalent (SWE) in mountain catchments remains a key problem in snow hydrology and water resources management. This is partly because there is no sensor to measure SWE beyond local scale. At Mt. Zugspitze, Germany, a superconducting gravimeter senses the gravity effect of the seasonal snow, reflecting the temporal evolution of SWE in a few kilometers scale radius. We used this new observation to evaluate two configurations of the Alpine3D distributed snow model. In the default run, the model was forced with meteorological station data. In the second run, we applied precipitation correction based on an 8 m resolution snow depth image derived from satellite observations (Pléiades). The snow depth image strongly improved the simulation of the snowpack gravity effect during the melt season. This result suggests that satellite observations can enhance SWE analyses in mountains with limited infrastructure.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 24","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL112483","citationCount":"0","resultStr":"{\"title\":\"Superconducting Gravimeter Observations Show That a Satellite-Derived Snow Depth Image Improves the Simulation of the Snow Water Equivalent Evolution in a High Alpine Site\",\"authors\":\"F. Koch,&nbsp;S. Gascoin,&nbsp;K. Achmüller,&nbsp;P. Schattan,&nbsp;K.-F. Wetzel,&nbsp;C. Deschamps-Berger,&nbsp;M. Lehning,&nbsp;T. Rehm,&nbsp;K. Schulz,&nbsp;C. Voigt\",\"doi\":\"10.1029/2024GL112483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The lack of accurate information on the spatiotemporal variations of snow water equivalent (SWE) in mountain catchments remains a key problem in snow hydrology and water resources management. This is partly because there is no sensor to measure SWE beyond local scale. At Mt. Zugspitze, Germany, a superconducting gravimeter senses the gravity effect of the seasonal snow, reflecting the temporal evolution of SWE in a few kilometers scale radius. We used this new observation to evaluate two configurations of the Alpine3D distributed snow model. In the default run, the model was forced with meteorological station data. In the second run, we applied precipitation correction based on an 8 m resolution snow depth image derived from satellite observations (Pléiades). The snow depth image strongly improved the simulation of the snowpack gravity effect during the melt season. This result suggests that satellite observations can enhance SWE analyses in mountains with limited infrastructure.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"51 24\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL112483\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GL112483\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GL112483","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

山区集水区雪水当量(SWE)时空变化的准确信息缺乏是当前雪水文与水资源管理中的一个关键问题。部分原因是没有传感器可以测量局部尺度以外的SWE。在德国的楚格斯皮策山,超导重力仪探测到季节性积雪的重力效应,反映了几公里尺度半径内SWE的时间演变。我们使用这个新的观测值来评估Alpine3D分布雪模型的两种配置。在默认运行中,模型是用气象站数据强制生成的。在第二次运行中,我们基于来自卫星观测的8 m分辨率雪深图像(placimiades)进行降水校正。积雪深度图像明显改善了融化期积雪重力效应的模拟。这一结果表明,卫星观测可以增强基础设施有限的山区的SWE分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Superconducting Gravimeter Observations Show That a Satellite-Derived Snow Depth Image Improves the Simulation of the Snow Water Equivalent Evolution in a High Alpine Site

Superconducting Gravimeter Observations Show That a Satellite-Derived Snow Depth Image Improves the Simulation of the Snow Water Equivalent Evolution in a High Alpine Site

Superconducting Gravimeter Observations Show That a Satellite-Derived Snow Depth Image Improves the Simulation of the Snow Water Equivalent Evolution in a High Alpine Site

The lack of accurate information on the spatiotemporal variations of snow water equivalent (SWE) in mountain catchments remains a key problem in snow hydrology and water resources management. This is partly because there is no sensor to measure SWE beyond local scale. At Mt. Zugspitze, Germany, a superconducting gravimeter senses the gravity effect of the seasonal snow, reflecting the temporal evolution of SWE in a few kilometers scale radius. We used this new observation to evaluate two configurations of the Alpine3D distributed snow model. In the default run, the model was forced with meteorological station data. In the second run, we applied precipitation correction based on an 8 m resolution snow depth image derived from satellite observations (Pléiades). The snow depth image strongly improved the simulation of the snowpack gravity effect during the melt season. This result suggests that satellite observations can enhance SWE analyses in mountains with limited infrastructure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信