一种可伸缩、无线充电、可按需释放能量的全身集成能源供应系统

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jiao Yuan, Zhaopeng Wang, Danli Xia, Hongwei Sheng, Qi Wang, Jinkun Hu, Lingxiao Ma, Fengfeng Li, Huasheng Bi, Haoshsuo Zhang, Daicao Wan, Wenquan Li, Zhaoqian Xie, Kairong Wang, Wei Lan
{"title":"一种可伸缩、无线充电、可按需释放能量的全身集成能源供应系统","authors":"Jiao Yuan, Zhaopeng Wang, Danli Xia, Hongwei Sheng, Qi Wang, Jinkun Hu, Lingxiao Ma, Fengfeng Li, Huasheng Bi, Haoshsuo Zhang, Daicao Wan, Wenquan Li, Zhaoqian Xie, Kairong Wang, Wei Lan","doi":"10.1016/j.nanoen.2024.110612","DOIUrl":null,"url":null,"abstract":"Stretchable body-integrated energy systems are urgently needed due to the rapid development of wearable and implantable electronic devices. Despite some progress, the challenges of simultaneously achieving sustained energy supply and on-demand release have not been well addressed. Herein, we construct a stretchable, biocompatible energy supply system that seamlessly integrates wireless charging and energy storage modules, as well as a light-controlled switching circuit. The mechanical and electrical properties of the integrated system under various deformation conditions are investigated using finite element analysis. Partially oxidized liquid metal (o-LM) is patterned to prepare the energy-receiving coils, current collector, and electrical connections between different components. Utilizing strong hydrogen bond interaction between o-LM and MXene, biaxial stretchy micro-supercapacitors with high performance are obtained, including high capacitance (121 mF cm<sup>-2</sup>) and excellent stretching stability. A switching circuit consisting of a photodiode and a triode is designed to achieve current amplification and on-demand power output. Demonstrations of the integrated system that powers wearable electronic devices and implantable pulsed electrical stimulation, and the biocompatibility evaluation of the system also confirmed its ability to provide a stable and continuous energy supply.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"2 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Stretchable, Wirelessly Rechargeable, Body-Integrated Energy Supply System with On-Demand Energy Release\",\"authors\":\"Jiao Yuan, Zhaopeng Wang, Danli Xia, Hongwei Sheng, Qi Wang, Jinkun Hu, Lingxiao Ma, Fengfeng Li, Huasheng Bi, Haoshsuo Zhang, Daicao Wan, Wenquan Li, Zhaoqian Xie, Kairong Wang, Wei Lan\",\"doi\":\"10.1016/j.nanoen.2024.110612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stretchable body-integrated energy systems are urgently needed due to the rapid development of wearable and implantable electronic devices. Despite some progress, the challenges of simultaneously achieving sustained energy supply and on-demand release have not been well addressed. Herein, we construct a stretchable, biocompatible energy supply system that seamlessly integrates wireless charging and energy storage modules, as well as a light-controlled switching circuit. The mechanical and electrical properties of the integrated system under various deformation conditions are investigated using finite element analysis. Partially oxidized liquid metal (o-LM) is patterned to prepare the energy-receiving coils, current collector, and electrical connections between different components. Utilizing strong hydrogen bond interaction between o-LM and MXene, biaxial stretchy micro-supercapacitors with high performance are obtained, including high capacitance (121 mF cm<sup>-2</sup>) and excellent stretching stability. A switching circuit consisting of a photodiode and a triode is designed to achieve current amplification and on-demand power output. Demonstrations of the integrated system that powers wearable electronic devices and implantable pulsed electrical stimulation, and the biocompatibility evaluation of the system also confirmed its ability to provide a stable and continuous energy supply.\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.nanoen.2024.110612\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2024.110612","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于可穿戴和植入式电子设备的快速发展,迫切需要可伸缩的身体集成能源系统。尽管取得了一些进展,但同时实现持续能源供应和按需释放的挑战尚未得到很好的解决。在此,我们构建了一个可伸缩的、生物兼容的能源供应系统,该系统无缝集成了无线充电和储能模块,以及光控开关电路。采用有限元分析方法研究了不同变形条件下集成系统的力学和电气性能。部分氧化的液态金属(o-LM)被制成图案,以制备能量接收线圈、集流器和不同组件之间的电气连接。利用o-LM和MXene之间的强氢键相互作用,获得了具有高电容(121 mF cm-2)和优异拉伸稳定性的高性能双轴拉伸微型超级电容器。设计了一个由光电二极管和三极管组成的开关电路,以实现电流放大和按需输出功率。为可穿戴电子设备和植入式脉冲电刺激提供动力的集成系统的演示,以及系统的生物相容性评估也证实了其提供稳定和持续能量供应的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Stretchable, Wirelessly Rechargeable, Body-Integrated Energy Supply System with On-Demand Energy Release

A Stretchable, Wirelessly Rechargeable, Body-Integrated Energy Supply System with On-Demand Energy Release
Stretchable body-integrated energy systems are urgently needed due to the rapid development of wearable and implantable electronic devices. Despite some progress, the challenges of simultaneously achieving sustained energy supply and on-demand release have not been well addressed. Herein, we construct a stretchable, biocompatible energy supply system that seamlessly integrates wireless charging and energy storage modules, as well as a light-controlled switching circuit. The mechanical and electrical properties of the integrated system under various deformation conditions are investigated using finite element analysis. Partially oxidized liquid metal (o-LM) is patterned to prepare the energy-receiving coils, current collector, and electrical connections between different components. Utilizing strong hydrogen bond interaction between o-LM and MXene, biaxial stretchy micro-supercapacitors with high performance are obtained, including high capacitance (121 mF cm-2) and excellent stretching stability. A switching circuit consisting of a photodiode and a triode is designed to achieve current amplification and on-demand power output. Demonstrations of the integrated system that powers wearable electronic devices and implantable pulsed electrical stimulation, and the biocompatibility evaluation of the system also confirmed its ability to provide a stable and continuous energy supply.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信