折纸结构反设计的连续统几何方法

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Alon Sardas , Michael Moshe , Cy Maor
{"title":"折纸结构反设计的连续统几何方法","authors":"Alon Sardas ,&nbsp;Michael Moshe ,&nbsp;Cy Maor","doi":"10.1016/j.jmps.2024.106003","DOIUrl":null,"url":null,"abstract":"<div><div>Miura-Ori, a celebrated origami pattern that facilitates functionality in matter, has found multiple applications in the field of mechanical metamaterials. Modifications of Miura-Ori pattern can produce curved configurations during folding, thereby enhancing its potential functionalities. Thus, a key challenge in designing generalized Miura-Ori structures is to tailor their folding patterns to achieve desired geometries. In this work, we address this inverse-design problem by developing a new continuum framework for the differential geometry of generalized Miura-Ori. By assuming that the perturbation to the classical Miura-Ori is slowly varying in space, we derive analytical relations between geometrical properties and the perturbation field. These relationships are shown to be invertible, allowing us to design complex curved geometries. Our framework enables porting knowledge, methods and tools from continuum theories of matter and differential geometry to the field of origami metamaterials.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"196 ","pages":"Article 106003"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A continuum geometric approach for inverse design of origami structures\",\"authors\":\"Alon Sardas ,&nbsp;Michael Moshe ,&nbsp;Cy Maor\",\"doi\":\"10.1016/j.jmps.2024.106003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Miura-Ori, a celebrated origami pattern that facilitates functionality in matter, has found multiple applications in the field of mechanical metamaterials. Modifications of Miura-Ori pattern can produce curved configurations during folding, thereby enhancing its potential functionalities. Thus, a key challenge in designing generalized Miura-Ori structures is to tailor their folding patterns to achieve desired geometries. In this work, we address this inverse-design problem by developing a new continuum framework for the differential geometry of generalized Miura-Ori. By assuming that the perturbation to the classical Miura-Ori is slowly varying in space, we derive analytical relations between geometrical properties and the perturbation field. These relationships are shown to be invertible, allowing us to design complex curved geometries. Our framework enables porting knowledge, methods and tools from continuum theories of matter and differential geometry to the field of origami metamaterials.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"196 \",\"pages\":\"Article 106003\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509624004691\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624004691","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Miura-Ori是一种著名的折纸图案,它促进了物质的功能,已经在机械超材料领域找到了多种应用。对Miura-Ori模式的修改可以在折叠过程中产生弯曲的结构,从而增强其潜在的功能。因此,设计广义Miura-Ori结构的一个关键挑战是定制它们的折叠模式以达到所需的几何形状。在这项工作中,我们通过为广义Miura-Ori的微分几何开发一个新的连续体框架来解决这个反设计问题。通过假设经典Miura-Ori的扰动在空间中是缓慢变化的,我们推导出几何性质与扰动场之间的解析关系。这些关系被证明是可逆的,允许我们设计复杂的弯曲几何。我们的框架能够将物质和微分几何的连续统理论的知识,方法和工具移植到折纸超材料领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A continuum geometric approach for inverse design of origami structures
Miura-Ori, a celebrated origami pattern that facilitates functionality in matter, has found multiple applications in the field of mechanical metamaterials. Modifications of Miura-Ori pattern can produce curved configurations during folding, thereby enhancing its potential functionalities. Thus, a key challenge in designing generalized Miura-Ori structures is to tailor their folding patterns to achieve desired geometries. In this work, we address this inverse-design problem by developing a new continuum framework for the differential geometry of generalized Miura-Ori. By assuming that the perturbation to the classical Miura-Ori is slowly varying in space, we derive analytical relations between geometrical properties and the perturbation field. These relationships are shown to be invertible, allowing us to design complex curved geometries. Our framework enables porting knowledge, methods and tools from continuum theories of matter and differential geometry to the field of origami metamaterials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信