基于宏微反应器的过程强化实现高混合性能、低压降和高通量液-液均质化工过程

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Shuangfei Zhao, Huiyue Wang, Xin Hu, Yihuan Liu, Zheng Fang, Yuanhai Su, Kai Guo, Ning Zhu
{"title":"基于宏微反应器的过程强化实现高混合性能、低压降和高通量液-液均质化工过程","authors":"Shuangfei Zhao, Huiyue Wang, Xin Hu, Yihuan Liu, Zheng Fang, Yuanhai Su, Kai Guo, Ning Zhu","doi":"10.1021/acs.iecr.4c02598","DOIUrl":null,"url":null,"abstract":"Microreactors provide an enhanced mixing performance but suffer from low throughput. This work proposed a macro-microreactor with designed internals to achieve both process intensification and scale-up for the liquid–liquid homogeneous chemical processes. Numerical simulations utilizing computational fluid dynamics were conducted to investigate the fluid mechanics and the properties of mixing of a macro-microreactor (feature size >2000 μm). Experimental validation using the Villermaux–Dushman reaction demonstrated that this easily fabricated macro-microreactor with optimized helical-shaped internal achieved a comparable mixing performance, lower pressure drop, and higher throughput compared to a typical microreactor with a smaller feature size (1000 μm). The macro-microreactor would find more applications in industrial liquid–liquid homogeneous chemical processes.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"20 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macro-microreactor-Based Process Intensification for Achievement of High-Mixing-Performance, Low-Pressure-Drop, and High-Throughput Liquid–Liquid Homogeneous Chemical Processes\",\"authors\":\"Shuangfei Zhao, Huiyue Wang, Xin Hu, Yihuan Liu, Zheng Fang, Yuanhai Su, Kai Guo, Ning Zhu\",\"doi\":\"10.1021/acs.iecr.4c02598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microreactors provide an enhanced mixing performance but suffer from low throughput. This work proposed a macro-microreactor with designed internals to achieve both process intensification and scale-up for the liquid–liquid homogeneous chemical processes. Numerical simulations utilizing computational fluid dynamics were conducted to investigate the fluid mechanics and the properties of mixing of a macro-microreactor (feature size >2000 μm). Experimental validation using the Villermaux–Dushman reaction demonstrated that this easily fabricated macro-microreactor with optimized helical-shaped internal achieved a comparable mixing performance, lower pressure drop, and higher throughput compared to a typical microreactor with a smaller feature size (1000 μm). The macro-microreactor would find more applications in industrial liquid–liquid homogeneous chemical processes.\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.iecr.4c02598\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c02598","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

微反应器提供了增强的混合性能,但受到低吞吐量的影响。本工作提出了一种具有设计内部结构的宏微反应器,以实现液-液均质化学过程的过程强化和放大。采用计算流体力学方法对特征尺寸为2000 μm的宏-微反应器的流体力学和混合特性进行了数值模拟研究。采用Villermaux-Dushman反应的实验验证表明,与典型的特征尺寸较小(1000 μm)的微反应器相比,该优化的螺旋形内部结构易于制造的宏观微反应器具有相当的混合性能,更低的压降和更高的吞吐量。宏微反应器将在工业液-液均相化学过程中得到更广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Macro-microreactor-Based Process Intensification for Achievement of High-Mixing-Performance, Low-Pressure-Drop, and High-Throughput Liquid–Liquid Homogeneous Chemical Processes

Macro-microreactor-Based Process Intensification for Achievement of High-Mixing-Performance, Low-Pressure-Drop, and High-Throughput Liquid–Liquid Homogeneous Chemical Processes
Microreactors provide an enhanced mixing performance but suffer from low throughput. This work proposed a macro-microreactor with designed internals to achieve both process intensification and scale-up for the liquid–liquid homogeneous chemical processes. Numerical simulations utilizing computational fluid dynamics were conducted to investigate the fluid mechanics and the properties of mixing of a macro-microreactor (feature size >2000 μm). Experimental validation using the Villermaux–Dushman reaction demonstrated that this easily fabricated macro-microreactor with optimized helical-shaped internal achieved a comparable mixing performance, lower pressure drop, and higher throughput compared to a typical microreactor with a smaller feature size (1000 μm). The macro-microreactor would find more applications in industrial liquid–liquid homogeneous chemical processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信