一个可扩展的基于木材的界面蒸发器辅助局部焦耳加热24小时操作

IF 13.2 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yang Ming, Shuo Shi, Wei Cai, Jing Liu, Daming Chen, Xin Hu, Rujun Yu, Xia Zhou, Benjamin Tawiah, Bin Fei
{"title":"一个可扩展的基于木材的界面蒸发器辅助局部焦耳加热24小时操作","authors":"Yang Ming, Shuo Shi, Wei Cai, Jing Liu, Daming Chen, Xin Hu, Rujun Yu, Xia Zhou, Benjamin Tawiah, Bin Fei","doi":"10.1016/j.cej.2024.158690","DOIUrl":null,"url":null,"abstract":"The evaporation efficiency of solar-driven interfacial steam is significantly affected by the diurnal variations in solar irradiance and is further compressed by the absence of light. This work proposes a wood-based interfacial evaporator with an auxiliary heat mode to achieve round-the-clock operations. The device was constructed using sustainable, cost-effective in-situ Ni-P electroless plating followed by hole drilling and surface graphite spray-coating. The self-floating evaporator achieves an evaporation rate of 2.20 kg m<sup>−2</sup>h<sup>−1</sup> under 1 Sun illumination and 2 V input in 3.5 wt% NaCl solution. The realized rate can be attributed to the localized interfacial heat induced by the electroless-plated Ni-P alloy (R<sub>sheet</sub> = 1.45 Ω/sq). Moreover, adopting the novel hierarchical advantages, including mesoporous nature, low anisotropic thermal conductivity of wood, and reduced evaporation enthalpy in Ni-P film (1893 J/g), the device further reaches a daytime evaporation yield of 8.47kg m<sup>−2</sup> on cloudy days and 14.68 kg m<sup>−2</sup> on sunny days, respectively. And a yield of 5.33 kg m<sup>−2</sup> with an electrical energy input of ∼ 0.71 kW m<sup>−2</sup> is recorded during nighttime. This performance implies a significant step towards wood-based evaporators for round-the-clock water harvesting and shows potential for upscaling devices to all-weather 3D evaporators.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"7 1","pages":""},"PeriodicalIF":13.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A scalable wood-based interfacial evaporator assisted with localized joule heating for round-the-clock operations\",\"authors\":\"Yang Ming, Shuo Shi, Wei Cai, Jing Liu, Daming Chen, Xin Hu, Rujun Yu, Xia Zhou, Benjamin Tawiah, Bin Fei\",\"doi\":\"10.1016/j.cej.2024.158690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evaporation efficiency of solar-driven interfacial steam is significantly affected by the diurnal variations in solar irradiance and is further compressed by the absence of light. This work proposes a wood-based interfacial evaporator with an auxiliary heat mode to achieve round-the-clock operations. The device was constructed using sustainable, cost-effective in-situ Ni-P electroless plating followed by hole drilling and surface graphite spray-coating. The self-floating evaporator achieves an evaporation rate of 2.20 kg m<sup>−2</sup>h<sup>−1</sup> under 1 Sun illumination and 2 V input in 3.5 wt% NaCl solution. The realized rate can be attributed to the localized interfacial heat induced by the electroless-plated Ni-P alloy (R<sub>sheet</sub> = 1.45 Ω/sq). Moreover, adopting the novel hierarchical advantages, including mesoporous nature, low anisotropic thermal conductivity of wood, and reduced evaporation enthalpy in Ni-P film (1893 J/g), the device further reaches a daytime evaporation yield of 8.47kg m<sup>−2</sup> on cloudy days and 14.68 kg m<sup>−2</sup> on sunny days, respectively. And a yield of 5.33 kg m<sup>−2</sup> with an electrical energy input of ∼ 0.71 kW m<sup>−2</sup> is recorded during nighttime. This performance implies a significant step towards wood-based evaporators for round-the-clock water harvesting and shows potential for upscaling devices to all-weather 3D evaporators.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.158690\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.158690","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

太阳驱动界面蒸汽的蒸发效率受到太阳辐照度日变化的显著影响,并因无光而进一步压缩。本工作提出了一种带有辅助加热模式的木质界面蒸发器,以实现全天候运行。该装置采用可持续、经济高效的原位Ni-P化学镀,然后进行钻孔和表面石墨喷涂。自浮式蒸发器在1个太阳光照和2 V输入下,在3.5 wt% NaCl溶液中,蒸发速率为2.20 kg m−2h−1。实现的速度可归因于化学镀Ni-P合金(Rsheet = 1.45 Ω/sq)引起的局部界面热。此外,利用木材的介孔性质、低各向异性导热系数以及Ni-P膜蒸发焓降低(1893 J/g)等新型分层优势,该装置在阴天和晴天的白天蒸发量分别达到8.47kg m−2和14.68 kg m−2。在夜间记录的产率为5.33 kg m−2,电能输入为 ~ 0.71 kW m−2。这一性能意味着朝着全天候集水的木质蒸发器迈出了重要一步,并显示了将设备升级为全天候3D蒸发器的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A scalable wood-based interfacial evaporator assisted with localized joule heating for round-the-clock operations
The evaporation efficiency of solar-driven interfacial steam is significantly affected by the diurnal variations in solar irradiance and is further compressed by the absence of light. This work proposes a wood-based interfacial evaporator with an auxiliary heat mode to achieve round-the-clock operations. The device was constructed using sustainable, cost-effective in-situ Ni-P electroless plating followed by hole drilling and surface graphite spray-coating. The self-floating evaporator achieves an evaporation rate of 2.20 kg m−2h−1 under 1 Sun illumination and 2 V input in 3.5 wt% NaCl solution. The realized rate can be attributed to the localized interfacial heat induced by the electroless-plated Ni-P alloy (Rsheet = 1.45 Ω/sq). Moreover, adopting the novel hierarchical advantages, including mesoporous nature, low anisotropic thermal conductivity of wood, and reduced evaporation enthalpy in Ni-P film (1893 J/g), the device further reaches a daytime evaporation yield of 8.47kg m−2 on cloudy days and 14.68 kg m−2 on sunny days, respectively. And a yield of 5.33 kg m−2 with an electrical energy input of ∼ 0.71 kW m−2 is recorded during nighttime. This performance implies a significant step towards wood-based evaporators for round-the-clock water harvesting and shows potential for upscaling devices to all-weather 3D evaporators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信