垒能工程实现单壁碳纳米管-小有机分子混合热电材料的高效载流子输运

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jae Gyu Jang, Tae-hoon Kim, Sung Hyun Kim, Jong-In Hong
{"title":"垒能工程实现单壁碳纳米管-小有机分子混合热电材料的高效载流子输运","authors":"Jae Gyu Jang, Tae-hoon Kim, Sung Hyun Kim, Jong-In Hong","doi":"10.1021/acsami.4c13964","DOIUrl":null,"url":null,"abstract":"Understanding the inherent charge carrier transport mechanism within carbon nanotube–organic hybrid thermoelectric (TE) materials is crucial for enhancing their TE performance. Although various carbon nanotube–organic hybrid TE materials have been developed, the influence of the barrier energy on the TE transport mechanism within these hybrids remains elusive. Our study focuses on the engineering of barrier energy between single-walled carbon nanotubes (SWCNTs) and small organic molecules (SOMs) by modulating the mesomeric effects of terminal functional groups on T-shaped SOMs. The minimization of barrier energy in an SWCNTs–<b>BTBIN</b> hybrid to 0.04 eV resulted in a semiconducting-dominant transport character, facilitating the energy filtering of SWCNTs–<b>BTBIN</b>. Consequently, SWCNTs–<b>BTBIN</b> achieved a higher Seebeck coefficient (65 μV K<sup>–1</sup>) than other hybrids (39–54 μV K<sup>–1</sup>) having steeper barrier energies (0.30 and 0.19 eV), enabling the highest power factor (798 μW m<sup>–1</sup> K<sup>–2</sup>) and <i>ZT</i> value up to 0.035 at room temperature among SWCNTs–<b>BTBI</b> hybrid series. A TE module consisting of SWCNTs–<b>BTBIN</b> incorporating five-leg TE elements produced an output power exceeding 0.82 μW, suggesting that integrating barrier energy engineering with analyses of TE transport mechanisms can significantly advance the design of high-performance nanocarbon-based organic hybrid TEs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"24 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Barrier Energy Engineering Enables Efficient Carrier Transport of Single-Walled Carbon Nanotube–Small Organic Molecules Hybrid Thermoelectrics\",\"authors\":\"Jae Gyu Jang, Tae-hoon Kim, Sung Hyun Kim, Jong-In Hong\",\"doi\":\"10.1021/acsami.4c13964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the inherent charge carrier transport mechanism within carbon nanotube–organic hybrid thermoelectric (TE) materials is crucial for enhancing their TE performance. Although various carbon nanotube–organic hybrid TE materials have been developed, the influence of the barrier energy on the TE transport mechanism within these hybrids remains elusive. Our study focuses on the engineering of barrier energy between single-walled carbon nanotubes (SWCNTs) and small organic molecules (SOMs) by modulating the mesomeric effects of terminal functional groups on T-shaped SOMs. The minimization of barrier energy in an SWCNTs–<b>BTBIN</b> hybrid to 0.04 eV resulted in a semiconducting-dominant transport character, facilitating the energy filtering of SWCNTs–<b>BTBIN</b>. Consequently, SWCNTs–<b>BTBIN</b> achieved a higher Seebeck coefficient (65 μV K<sup>–1</sup>) than other hybrids (39–54 μV K<sup>–1</sup>) having steeper barrier energies (0.30 and 0.19 eV), enabling the highest power factor (798 μW m<sup>–1</sup> K<sup>–2</sup>) and <i>ZT</i> value up to 0.035 at room temperature among SWCNTs–<b>BTBI</b> hybrid series. A TE module consisting of SWCNTs–<b>BTBIN</b> incorporating five-leg TE elements produced an output power exceeding 0.82 μW, suggesting that integrating barrier energy engineering with analyses of TE transport mechanisms can significantly advance the design of high-performance nanocarbon-based organic hybrid TEs.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c13964\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c13964","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解碳纳米管-有机杂化热电材料内在的载流子输运机制对提高其热电性能至关重要。虽然已经开发了各种碳纳米管-有机杂化TE材料,但势垒能对这些杂化材料中TE输运机制的影响仍然难以捉摸。我们的研究重点是通过调节末端官能团在t型有机小分子上的中间体效应,来设计单壁碳纳米管(SWCNTs)和有机小分子(SOMs)之间的势垒能。在SWCNTs-BTBIN杂化中,势垒能最小到0.04 eV,导致了半导体主导的输运特性,促进了SWCNTs-BTBIN的能量过滤。因此,SWCNTs-BTBI复合材料的塞贝克系数(65 μV K-1)高于其他杂化材料(39 ~ 54 μV K-1),具有更大的势垒能(0.30和0.19 eV),其功率因数(798 μW m-1 K-2)和室温ZT值高达0.035。由五支支TE元件组成的SWCNTs-BTBIN组成的TE模块输出功率超过0.82 μW,表明将势垒能工程与TE输运机制分析相结合可以显著推进高性能纳米碳基有机杂化TE的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Barrier Energy Engineering Enables Efficient Carrier Transport of Single-Walled Carbon Nanotube–Small Organic Molecules Hybrid Thermoelectrics

Barrier Energy Engineering Enables Efficient Carrier Transport of Single-Walled Carbon Nanotube–Small Organic Molecules Hybrid Thermoelectrics
Understanding the inherent charge carrier transport mechanism within carbon nanotube–organic hybrid thermoelectric (TE) materials is crucial for enhancing their TE performance. Although various carbon nanotube–organic hybrid TE materials have been developed, the influence of the barrier energy on the TE transport mechanism within these hybrids remains elusive. Our study focuses on the engineering of barrier energy between single-walled carbon nanotubes (SWCNTs) and small organic molecules (SOMs) by modulating the mesomeric effects of terminal functional groups on T-shaped SOMs. The minimization of barrier energy in an SWCNTs–BTBIN hybrid to 0.04 eV resulted in a semiconducting-dominant transport character, facilitating the energy filtering of SWCNTs–BTBIN. Consequently, SWCNTs–BTBIN achieved a higher Seebeck coefficient (65 μV K–1) than other hybrids (39–54 μV K–1) having steeper barrier energies (0.30 and 0.19 eV), enabling the highest power factor (798 μW m–1 K–2) and ZT value up to 0.035 at room temperature among SWCNTs–BTBI hybrid series. A TE module consisting of SWCNTs–BTBIN incorporating five-leg TE elements produced an output power exceeding 0.82 μW, suggesting that integrating barrier energy engineering with analyses of TE transport mechanisms can significantly advance the design of high-performance nanocarbon-based organic hybrid TEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信