{"title":"Advanced solar photo-Fenton-like process with directly growing nano-heterojunctions on graphite fiber felt for phenolic wastewater treatment :Synergistically expand the pH activity range and facilitate the Fe(III)/Fe(II) cycle.","authors":"Qianying Zong, Xiaofei Niu, Xin Cheng, Yifan Liu, Cong Liu, Tingyue Shi, Jiapeng Liu, Xiaohong Yang, Wentao Wang, Zikuan Guo, Fengjuan Xiao","doi":"10.1016/j.chemosphere.2024.143980","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoscale FeWO<sub>4</sub>/BiVO<sub>4</sub> heterojunctions were directly grown on the graphite fiber felt (GF) with good conductivity to construct a FeWO<sub>4</sub>/BiVO<sub>4</sub> @GF solar photo-Fenton like wastewater treatment system. The removal effect of COD from phenolic wastewater and the mechanism of synergistic improvement of wastewater treatment efficiency by this system were investigated. The FeWO<sub>4</sub>/BiVO<sub>4</sub> heterojunction prepared by hydrothermal method exhibited higher photoelectric conversion efficiency and solar light utilization rate, thus endowing FeWO<sub>4</sub>/BiVO<sub>4</sub> with excellent solar-Fenton like reaction activity.The photo-Fenton activity can be maintained well even within the pH range of 2-8. Loading FeWO<sub>4</sub>/BiVO<sub>4</sub> nano-heterojunction on GF helped to increase the contact area between Fenton reagents and wastewater, facilitate the electron transfer on the FeWO<sub>4</sub>/BiVO<sub>4</sub> heterojunction and enable the recovery and reuse of the Fenton reagents.Under solar light radiation, the COD removal efficiency of FeWO<sub>4</sub>/BiVO<sub>4</sub> @GF/H<sub>2</sub>O<sub>2</sub> system in phenolic wastewater was more than 92%. Even after five cycles, the system still exhibited excellent operation stability. FeWO<sub>4</sub>/BiVO<sub>4</sub>@GF promoted the conversion and cycling of Fe(III)/Fe(II) by accelerating the separation and transport of photogenerated electrons/holes and increasing the concentration of active species, thereby stimulating excellent solar photo-Fenton like activity.The results are significance to the development of green and efficient photo-Fenton process for advanced treatment of industrial wastewater.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143980"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advanced solar photo-Fenton-like process with directly growing nano-heterojunctions on graphite fiber felt for phenolic wastewater treatment :Synergistically expand the pH activity range and facilitate the Fe(III)/Fe(II) cycle.
Nanoscale FeWO4/BiVO4 heterojunctions were directly grown on the graphite fiber felt (GF) with good conductivity to construct a FeWO4/BiVO4 @GF solar photo-Fenton like wastewater treatment system. The removal effect of COD from phenolic wastewater and the mechanism of synergistic improvement of wastewater treatment efficiency by this system were investigated. The FeWO4/BiVO4 heterojunction prepared by hydrothermal method exhibited higher photoelectric conversion efficiency and solar light utilization rate, thus endowing FeWO4/BiVO4 with excellent solar-Fenton like reaction activity.The photo-Fenton activity can be maintained well even within the pH range of 2-8. Loading FeWO4/BiVO4 nano-heterojunction on GF helped to increase the contact area between Fenton reagents and wastewater, facilitate the electron transfer on the FeWO4/BiVO4 heterojunction and enable the recovery and reuse of the Fenton reagents.Under solar light radiation, the COD removal efficiency of FeWO4/BiVO4 @GF/H2O2 system in phenolic wastewater was more than 92%. Even after five cycles, the system still exhibited excellent operation stability. FeWO4/BiVO4@GF promoted the conversion and cycling of Fe(III)/Fe(II) by accelerating the separation and transport of photogenerated electrons/holes and increasing the concentration of active species, thereby stimulating excellent solar photo-Fenton like activity.The results are significance to the development of green and efficient photo-Fenton process for advanced treatment of industrial wastewater.