在石墨纤维毡上直接生长纳米异质结的先进太阳能光fenton类工艺处理含酚废水:协同扩大pH活性范围,促进Fe(III)/Fe(II)循环

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Qianying Zong, Xiaofei Niu, Xin Cheng, Yifan Liu, Cong Liu, Tingyue Shi, Jiapeng Liu, Xiaohong Yang, Wentao Wang, Zikuan Guo, Fengjuan Xiao
{"title":"在石墨纤维毡上直接生长纳米异质结的先进太阳能光fenton类工艺处理含酚废水:协同扩大pH活性范围,促进Fe(III)/Fe(II)循环","authors":"Qianying Zong,&nbsp;Xiaofei Niu,&nbsp;Xin Cheng,&nbsp;Yifan Liu,&nbsp;Cong Liu,&nbsp;Tingyue Shi,&nbsp;Jiapeng Liu,&nbsp;Xiaohong Yang,&nbsp;Wentao Wang,&nbsp;Zikuan Guo,&nbsp;Fengjuan Xiao","doi":"10.1016/j.chemosphere.2024.143980","DOIUrl":null,"url":null,"abstract":"<div><div>Nanoscale FeWO<sub>4</sub>/BiVO<sub>4</sub> heterojunctions were directly grown on the graphite fiber felt (GF) with good conductivity to construct a FeWO<sub>4</sub>/BiVO<sub>4</sub> @GF solar photo-Fenton like wastewater treatment system. The removal effect of COD from phenolic wastewater and the mechanism of synergistic improvement of wastewater treatment efficiency by this system were investigated. The FeWO<sub>4</sub>/BiVO<sub>4</sub> heterojunction prepared by hydrothermal method exhibited higher photoelectric conversion efficiency and solar light utilization rate, thus endowing FeWO<sub>4</sub>/BiVO<sub>4</sub> with excellent solar-Fenton like reaction activity.The photo-Fenton activity can be maintained well even within the pH range of 2–8. Loading FeWO<sub>4</sub>/BiVO<sub>4</sub> nano-heterojunction on GF helped to increase the contact area between Fenton reagents and wastewater, facilitate the electron transfer on the FeWO<sub>4</sub>/BiVO<sub>4</sub> heterojunction and enable the recovery and reuse of the Fenton reagents.Under solar light radiation, the COD removal efficiency of FeWO<sub>4</sub>/BiVO<sub>4</sub> @GF/H<sub>2</sub>O<sub>2</sub> system in phenolic wastewater was more than 92%. Even after five cycles, the system still exhibited excellent operation stability. FeWO<sub>4</sub>/BiVO<sub>4</sub>@GF promoted the conversion and cycling of Fe(III)/Fe(II) by accelerating the separation and transport of photogenerated electrons/holes and increasing the concentration of active species, thereby stimulating excellent solar photo-Fenton like activity.The results are significance to the development of green and efficient photo-Fenton process for advanced treatment of industrial wastewater.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"373 ","pages":"Article 143980"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced solar photo-Fenton-like process with directly growing nano-heterojunctions on graphite fiber felt for phenolic wastewater treatment: Synergistically expand the pH activity range and facilitate the Fe(III)/Fe(II) cycle\",\"authors\":\"Qianying Zong,&nbsp;Xiaofei Niu,&nbsp;Xin Cheng,&nbsp;Yifan Liu,&nbsp;Cong Liu,&nbsp;Tingyue Shi,&nbsp;Jiapeng Liu,&nbsp;Xiaohong Yang,&nbsp;Wentao Wang,&nbsp;Zikuan Guo,&nbsp;Fengjuan Xiao\",\"doi\":\"10.1016/j.chemosphere.2024.143980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanoscale FeWO<sub>4</sub>/BiVO<sub>4</sub> heterojunctions were directly grown on the graphite fiber felt (GF) with good conductivity to construct a FeWO<sub>4</sub>/BiVO<sub>4</sub> @GF solar photo-Fenton like wastewater treatment system. The removal effect of COD from phenolic wastewater and the mechanism of synergistic improvement of wastewater treatment efficiency by this system were investigated. The FeWO<sub>4</sub>/BiVO<sub>4</sub> heterojunction prepared by hydrothermal method exhibited higher photoelectric conversion efficiency and solar light utilization rate, thus endowing FeWO<sub>4</sub>/BiVO<sub>4</sub> with excellent solar-Fenton like reaction activity.The photo-Fenton activity can be maintained well even within the pH range of 2–8. Loading FeWO<sub>4</sub>/BiVO<sub>4</sub> nano-heterojunction on GF helped to increase the contact area between Fenton reagents and wastewater, facilitate the electron transfer on the FeWO<sub>4</sub>/BiVO<sub>4</sub> heterojunction and enable the recovery and reuse of the Fenton reagents.Under solar light radiation, the COD removal efficiency of FeWO<sub>4</sub>/BiVO<sub>4</sub> @GF/H<sub>2</sub>O<sub>2</sub> system in phenolic wastewater was more than 92%. Even after five cycles, the system still exhibited excellent operation stability. FeWO<sub>4</sub>/BiVO<sub>4</sub>@GF promoted the conversion and cycling of Fe(III)/Fe(II) by accelerating the separation and transport of photogenerated electrons/holes and increasing the concentration of active species, thereby stimulating excellent solar photo-Fenton like activity.The results are significance to the development of green and efficient photo-Fenton process for advanced treatment of industrial wastewater.</div></div>\",\"PeriodicalId\":276,\"journal\":{\"name\":\"Chemosphere\",\"volume\":\"373 \",\"pages\":\"Article 143980\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045653524028881\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524028881","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在具有良好导电性的石墨纤维毡(GF)上直接生长了纳米级的 FeWO4/BiVO4 异质结,从而构建了类似于太阳能光-芬顿废水处理系统的 FeWO4/BiVO4 @GF。研究了该系统对酚类废水中 COD 的去除效果以及协同提高废水处理效率的机理。水热法制备的 FeWO4/BiVO4 异质结表现出更高的光电转换效率和太阳光利用率,从而赋予 FeWO4/BiVO4 优异的类似太阳-芬顿反应活性。在 GF 上添加 FeWO4/BiVO4 纳米异质结有助于增加 Fenton 试剂与废水的接触面积,促进 FeWO4/BiVO4 异质结上的电子转移,实现 Fenton 试剂的回收和再利用。在太阳光照射下,FeWO4/BiVO4 @GF/H2O2 系统对酚类废水中 COD 的去除率超过 92%,即使在五个循环之后,该系统仍然表现出极佳的运行稳定性。FeWO4/BiVO4@GF通过加速光生电子/空穴的分离和传输,提高活性物种的浓度,促进了Fe(III)/Fe(II)的转化和循环,从而激发了类似太阳能光-芬顿的优异活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advanced solar photo-Fenton-like process with directly growing nano-heterojunctions on graphite fiber felt for phenolic wastewater treatment: Synergistically expand the pH activity range and facilitate the Fe(III)/Fe(II) cycle

Advanced solar photo-Fenton-like process with directly growing nano-heterojunctions on graphite fiber felt for phenolic wastewater treatment: Synergistically expand the pH activity range and facilitate the Fe(III)/Fe(II) cycle
Nanoscale FeWO4/BiVO4 heterojunctions were directly grown on the graphite fiber felt (GF) with good conductivity to construct a FeWO4/BiVO4 @GF solar photo-Fenton like wastewater treatment system. The removal effect of COD from phenolic wastewater and the mechanism of synergistic improvement of wastewater treatment efficiency by this system were investigated. The FeWO4/BiVO4 heterojunction prepared by hydrothermal method exhibited higher photoelectric conversion efficiency and solar light utilization rate, thus endowing FeWO4/BiVO4 with excellent solar-Fenton like reaction activity.The photo-Fenton activity can be maintained well even within the pH range of 2–8. Loading FeWO4/BiVO4 nano-heterojunction on GF helped to increase the contact area between Fenton reagents and wastewater, facilitate the electron transfer on the FeWO4/BiVO4 heterojunction and enable the recovery and reuse of the Fenton reagents.Under solar light radiation, the COD removal efficiency of FeWO4/BiVO4 @GF/H2O2 system in phenolic wastewater was more than 92%. Even after five cycles, the system still exhibited excellent operation stability. FeWO4/BiVO4@GF promoted the conversion and cycling of Fe(III)/Fe(II) by accelerating the separation and transport of photogenerated electrons/holes and increasing the concentration of active species, thereby stimulating excellent solar photo-Fenton like activity.The results are significance to the development of green and efficient photo-Fenton process for advanced treatment of industrial wastewater.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemosphere
Chemosphere 环境科学-环境科学
CiteScore
15.80
自引率
8.00%
发文量
4975
审稿时长
3.4 months
期刊介绍: Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信