葡萄膜炎中的人工智能:诊断和治疗策略的创新。

Clinical ophthalmology (Auckland, N.Z.) Pub Date : 2024-12-14 eCollection Date: 2024-01-01 DOI:10.2147/OPTH.S495307
Siva Raman Bala Murugan, Srinivasan Sanjay, Anjana Somanath, Padmamalini Mahendradas, Aditya Patil, Kirandeep Kaur, Bharat Gurnani
{"title":"葡萄膜炎中的人工智能:诊断和治疗策略的创新。","authors":"Siva Raman Bala Murugan, Srinivasan Sanjay, Anjana Somanath, Padmamalini Mahendradas, Aditya Patil, Kirandeep Kaur, Bharat Gurnani","doi":"10.2147/OPTH.S495307","DOIUrl":null,"url":null,"abstract":"<p><p>In the dynamic field of ophthalmology, artificial intelligence (AI) is emerging as a transformative tool in managing complex conditions like uveitis. Characterized by diverse inflammatory responses, uveitis presents significant diagnostic and therapeutic challenges. This systematic review explores the role of AI in advancing diagnostic precision, optimizing therapeutic approaches, and improving patient outcomes in uveitis care. A comprehensive search of PubMed, Scopus, Google Scholar, Web of Science, and Embase identified over 10,000 articles using primary and secondary keywords related to AI and uveitis. Rigorous screening based on predefined criteria reduced the pool to 52 high-quality studies, categorized into six themes: diagnostic support algorithms, screening algorithms, standardization of Uveitis Nomenclature (SUN), AI applications in management, systemic implications of AI, and limitations with future directions. AI technologies, including machine learning (ML) and deep learning (DL), demonstrated proficiency in anterior chamber inflammation detection, vitreous haze grading, and screening for conditions like ocular toxoplasmosis. Despite these advancements, challenges such as dataset quality, algorithmic transparency, and ethical concerns persist. Future research should focus on developing robust, multimodal AI systems and fostering collaboration among academia and industry to ensure equitable, ethical, and effective AI applications. The integration of AI heralds a new era in uveitis management, emphasizing precision medicine and enhanced care delivery.</p>","PeriodicalId":93945,"journal":{"name":"Clinical ophthalmology (Auckland, N.Z.)","volume":"18 ","pages":"3753-3766"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656483/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence in Uveitis: Innovations in Diagnosis and Therapeutic Strategies.\",\"authors\":\"Siva Raman Bala Murugan, Srinivasan Sanjay, Anjana Somanath, Padmamalini Mahendradas, Aditya Patil, Kirandeep Kaur, Bharat Gurnani\",\"doi\":\"10.2147/OPTH.S495307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the dynamic field of ophthalmology, artificial intelligence (AI) is emerging as a transformative tool in managing complex conditions like uveitis. Characterized by diverse inflammatory responses, uveitis presents significant diagnostic and therapeutic challenges. This systematic review explores the role of AI in advancing diagnostic precision, optimizing therapeutic approaches, and improving patient outcomes in uveitis care. A comprehensive search of PubMed, Scopus, Google Scholar, Web of Science, and Embase identified over 10,000 articles using primary and secondary keywords related to AI and uveitis. Rigorous screening based on predefined criteria reduced the pool to 52 high-quality studies, categorized into six themes: diagnostic support algorithms, screening algorithms, standardization of Uveitis Nomenclature (SUN), AI applications in management, systemic implications of AI, and limitations with future directions. AI technologies, including machine learning (ML) and deep learning (DL), demonstrated proficiency in anterior chamber inflammation detection, vitreous haze grading, and screening for conditions like ocular toxoplasmosis. Despite these advancements, challenges such as dataset quality, algorithmic transparency, and ethical concerns persist. Future research should focus on developing robust, multimodal AI systems and fostering collaboration among academia and industry to ensure equitable, ethical, and effective AI applications. The integration of AI heralds a new era in uveitis management, emphasizing precision medicine and enhanced care delivery.</p>\",\"PeriodicalId\":93945,\"journal\":{\"name\":\"Clinical ophthalmology (Auckland, N.Z.)\",\"volume\":\"18 \",\"pages\":\"3753-3766\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656483/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical ophthalmology (Auckland, N.Z.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/OPTH.S495307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical ophthalmology (Auckland, N.Z.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/OPTH.S495307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在充满活力的眼科领域,人工智能(AI)正在成为治疗葡萄膜炎等复杂病症的变革性工具。葡萄膜炎以多种炎症反应为特征,给诊断和治疗带来了巨大挑战。这篇系统性综述探讨了人工智能在提高诊断精确度、优化治疗方法和改善葡萄膜炎患者治疗效果方面的作用。通过对 PubMed、Scopus、Google Scholar、Web of Science 和 Embase 的全面搜索,使用与人工智能和葡萄膜炎相关的主要和次要关键字,发现了 10,000 多篇文章。根据预先设定的标准进行严格筛选后,高质量的研究报告减少到52篇,并分为六个主题:诊断支持算法、筛查算法、葡萄膜炎术语标准化(SUN)、人工智能在管理中的应用、人工智能的系统性影响以及未来发展方向的局限性。包括机器学习(ML)和深度学习(DL)在内的人工智能技术在前房炎症检测、玻璃体混浊分级以及眼弓形虫病等疾病的筛查方面表现出色。尽管取得了这些进步,但数据集质量、算法透明度和伦理问题等挑战依然存在。未来的研究应侧重于开发强大的多模式人工智能系统,并促进学术界和产业界之间的合作,以确保公平、道德和有效的人工智能应用。人工智能的整合预示着葡萄膜炎管理进入了一个新时代,强调精准医疗和加强护理服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Intelligence in Uveitis: Innovations in Diagnosis and Therapeutic Strategies.

In the dynamic field of ophthalmology, artificial intelligence (AI) is emerging as a transformative tool in managing complex conditions like uveitis. Characterized by diverse inflammatory responses, uveitis presents significant diagnostic and therapeutic challenges. This systematic review explores the role of AI in advancing diagnostic precision, optimizing therapeutic approaches, and improving patient outcomes in uveitis care. A comprehensive search of PubMed, Scopus, Google Scholar, Web of Science, and Embase identified over 10,000 articles using primary and secondary keywords related to AI and uveitis. Rigorous screening based on predefined criteria reduced the pool to 52 high-quality studies, categorized into six themes: diagnostic support algorithms, screening algorithms, standardization of Uveitis Nomenclature (SUN), AI applications in management, systemic implications of AI, and limitations with future directions. AI technologies, including machine learning (ML) and deep learning (DL), demonstrated proficiency in anterior chamber inflammation detection, vitreous haze grading, and screening for conditions like ocular toxoplasmosis. Despite these advancements, challenges such as dataset quality, algorithmic transparency, and ethical concerns persist. Future research should focus on developing robust, multimodal AI systems and fostering collaboration among academia and industry to ensure equitable, ethical, and effective AI applications. The integration of AI heralds a new era in uveitis management, emphasizing precision medicine and enhanced care delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信