Prajna P. Mohapatra , Hodam Karnajit Singh , Pamu Dobbidi
{"title":"电磁微波吸收器的进展:铁氧体和碳质材料","authors":"Prajna P. Mohapatra , Hodam Karnajit Singh , Pamu Dobbidi","doi":"10.1016/j.cis.2024.103381","DOIUrl":null,"url":null,"abstract":"<div><div>Heightened levels of electromagnetic (EM) radiation emitted by electronic devices, communication equipment, and information processing technologies have become a significant concern recently. So, substantial efforts have been devoted for developing novel materials having high EM absorption properties. This critical review article provides an overview of the advancements in understanding and developing such materials. It delves into the interaction between EM radiation and absorbing materials, focusing on phenomena like multiple reflections, scattering, and polarization. Additionally, the study discusses various types of losses that impact microwave absorber performance, like magnetic loss, and dielectric loss. Each of these losses has distinct implications for microwave absorbers' effectiveness. Furthermore, the review offers detailed insights into different microwave-absorbing materials, such as metal composites, magnetic materials, conducting polymers, and carbonaceous materials (composites with carbon fiber, porous carbon, carbon nanotube, graphene oxide, etc.). Overall, it highlights the progress achieved in microwave-absorbing materials and emphasizes optimizing various loss mechanisms for enhanced performance.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"337 ","pages":"Article 103381"},"PeriodicalIF":15.9000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in electromagnetic microwave absorbers: Ferrites and carbonaceous materials\",\"authors\":\"Prajna P. Mohapatra , Hodam Karnajit Singh , Pamu Dobbidi\",\"doi\":\"10.1016/j.cis.2024.103381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heightened levels of electromagnetic (EM) radiation emitted by electronic devices, communication equipment, and information processing technologies have become a significant concern recently. So, substantial efforts have been devoted for developing novel materials having high EM absorption properties. This critical review article provides an overview of the advancements in understanding and developing such materials. It delves into the interaction between EM radiation and absorbing materials, focusing on phenomena like multiple reflections, scattering, and polarization. Additionally, the study discusses various types of losses that impact microwave absorber performance, like magnetic loss, and dielectric loss. Each of these losses has distinct implications for microwave absorbers' effectiveness. Furthermore, the review offers detailed insights into different microwave-absorbing materials, such as metal composites, magnetic materials, conducting polymers, and carbonaceous materials (composites with carbon fiber, porous carbon, carbon nanotube, graphene oxide, etc.). Overall, it highlights the progress achieved in microwave-absorbing materials and emphasizes optimizing various loss mechanisms for enhanced performance.</div></div>\",\"PeriodicalId\":239,\"journal\":{\"name\":\"Advances in Colloid and Interface Science\",\"volume\":\"337 \",\"pages\":\"Article 103381\"},\"PeriodicalIF\":15.9000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000186862400304X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000186862400304X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Advancements in electromagnetic microwave absorbers: Ferrites and carbonaceous materials
Heightened levels of electromagnetic (EM) radiation emitted by electronic devices, communication equipment, and information processing technologies have become a significant concern recently. So, substantial efforts have been devoted for developing novel materials having high EM absorption properties. This critical review article provides an overview of the advancements in understanding and developing such materials. It delves into the interaction between EM radiation and absorbing materials, focusing on phenomena like multiple reflections, scattering, and polarization. Additionally, the study discusses various types of losses that impact microwave absorber performance, like magnetic loss, and dielectric loss. Each of these losses has distinct implications for microwave absorbers' effectiveness. Furthermore, the review offers detailed insights into different microwave-absorbing materials, such as metal composites, magnetic materials, conducting polymers, and carbonaceous materials (composites with carbon fiber, porous carbon, carbon nanotube, graphene oxide, etc.). Overall, it highlights the progress achieved in microwave-absorbing materials and emphasizes optimizing various loss mechanisms for enhanced performance.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.