{"title":"精准肿瘤学:利用癌症基因组学推进靶向治疗。","authors":"Cigir Biray Avci, Bakiye Goker Bagca, Behrouz Shademan, Leila Sabour Takanlou, Maryam Sabour Takanlou, Alireza Nourazarian","doi":"10.1016/j.bbcan.2024.189250","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer genomics plays a crucial role in oncology by enhancing our understanding of how genes drive cancer and facilitating the development of improved treatments. This field meticulously examines various cancers' genetic makeup through various methodologies, leading to groundbreaking discoveries. Innovative tools such as rapid gene sequencing, single-cell studies, spatial gene mapping, epigenetic analysis, liquid biopsies, and computational modeling have significantly progressed the field. These techniques uncover genetic alterations, tumor heterogeneity, and the evolutionary dynamics of cancers. Genetic abnormalities and molecular markers that initiate and propagate distinct cancer types are classified according to tumor type. The integration of precision medicine with cancer genomics emphasizes the significance of utilizing genetic data in treatment decision-making, enabling personalized care and enhancing patient outcomes. Critical topics in cancer genomics encompass tumor diversity, alterations in non-coding DNA, epigenetic modifications, cancer-specific proteins, metabolic changes, and the impact of inherited genes on cancer risk.</p>","PeriodicalId":93897,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":" ","pages":"189250"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precision oncology: Using cancer genomics for targeted therapy advancements.\",\"authors\":\"Cigir Biray Avci, Bakiye Goker Bagca, Behrouz Shademan, Leila Sabour Takanlou, Maryam Sabour Takanlou, Alireza Nourazarian\",\"doi\":\"10.1016/j.bbcan.2024.189250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer genomics plays a crucial role in oncology by enhancing our understanding of how genes drive cancer and facilitating the development of improved treatments. This field meticulously examines various cancers' genetic makeup through various methodologies, leading to groundbreaking discoveries. Innovative tools such as rapid gene sequencing, single-cell studies, spatial gene mapping, epigenetic analysis, liquid biopsies, and computational modeling have significantly progressed the field. These techniques uncover genetic alterations, tumor heterogeneity, and the evolutionary dynamics of cancers. Genetic abnormalities and molecular markers that initiate and propagate distinct cancer types are classified according to tumor type. The integration of precision medicine with cancer genomics emphasizes the significance of utilizing genetic data in treatment decision-making, enabling personalized care and enhancing patient outcomes. Critical topics in cancer genomics encompass tumor diversity, alterations in non-coding DNA, epigenetic modifications, cancer-specific proteins, metabolic changes, and the impact of inherited genes on cancer risk.</p>\",\"PeriodicalId\":93897,\"journal\":{\"name\":\"Biochimica et biophysica acta. Reviews on cancer\",\"volume\":\" \",\"pages\":\"189250\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Reviews on cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bbcan.2024.189250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Reviews on cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bbcan.2024.189250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Precision oncology: Using cancer genomics for targeted therapy advancements.
Cancer genomics plays a crucial role in oncology by enhancing our understanding of how genes drive cancer and facilitating the development of improved treatments. This field meticulously examines various cancers' genetic makeup through various methodologies, leading to groundbreaking discoveries. Innovative tools such as rapid gene sequencing, single-cell studies, spatial gene mapping, epigenetic analysis, liquid biopsies, and computational modeling have significantly progressed the field. These techniques uncover genetic alterations, tumor heterogeneity, and the evolutionary dynamics of cancers. Genetic abnormalities and molecular markers that initiate and propagate distinct cancer types are classified according to tumor type. The integration of precision medicine with cancer genomics emphasizes the significance of utilizing genetic data in treatment decision-making, enabling personalized care and enhancing patient outcomes. Critical topics in cancer genomics encompass tumor diversity, alterations in non-coding DNA, epigenetic modifications, cancer-specific proteins, metabolic changes, and the impact of inherited genes on cancer risk.