Wei Zhou, Yongqiang Zhou, Shikun Zhang, Bin Li, Zhong Li, Zhijie Bai, Dezhi Sun, Chaoji Huangfu, Ningning Wang, Tiantian Xia, Congshu Huang, Lina Guan, Xi Yang, Yangyi Hu, Pengfei Zhang, Pan Shen, Rui Wang, Zhexin Ni, Yue Gao
{"title":"肠道微生物群在高海拔认知障碍中的作用:补充梭状芽孢杆菌的治疗潜力。","authors":"Wei Zhou, Yongqiang Zhou, Shikun Zhang, Bin Li, Zhong Li, Zhijie Bai, Dezhi Sun, Chaoji Huangfu, Ningning Wang, Tiantian Xia, Congshu Huang, Lina Guan, Xi Yang, Yangyi Hu, Pengfei Zhang, Pan Shen, Rui Wang, Zhexin Ni, Yue Gao","doi":"10.1007/s11427-024-2779-9","DOIUrl":null,"url":null,"abstract":"<p><p>Prolonged exposure to high-altitude environments may increase the risk of cognitive decline in young migrants. Recent studies suggest that hypobaric hypoxia-induced alterations in gut microbial composition could partly contribute to this risk. However, the absence of direct evidence from cohort studies and an unclear mechanism hinder intervention development based on this hypothesis. This study recruited 109 young male migrants living in Xizang to investigate the microbial mechanisms underlying cognitive impairment associated with high-altitude migration. Multi-omic analysis revealed distinct microbiome and metabolome features in migrants with cognitive decline, notably a reduced abundance of Clostridium species and disrupted fecal absorption of L-valine. Mechanistic studies showed that hypobaric hypoxia significantly damaged the intestinal barrier, leading to lipopolysaccharide (LPS) leakage and an influx of inflammatory factors into the peripheral blood, which activated microglia and caused neuronal injury in the hippocampus of mice. Additionally, compromised L-valine absorption due to intestinal barrier damage correlated with lower hippocampal glutamate levels and neurotrophic factors. Intervention with Clostridium sp. effectively restored the intestinal barrier and enhanced L-valine absorption, which mitigated hypobaric hypoxia-induced inflammation and hippocampal neural damage in mice. In conclusion, cognitive impairment among young migrants at high altitude may be attributed to hypobaric hypoxia-induced gut microbiota disruption and subsequent intestinal barrier dysfunction. This study may provide a promising approach for preventing and treating high-altitude-associated cognitive impairment.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gut microbiota's role in high-altitude cognitive impairment: the therapeutic potential of Clostridium sp. supplementation.\",\"authors\":\"Wei Zhou, Yongqiang Zhou, Shikun Zhang, Bin Li, Zhong Li, Zhijie Bai, Dezhi Sun, Chaoji Huangfu, Ningning Wang, Tiantian Xia, Congshu Huang, Lina Guan, Xi Yang, Yangyi Hu, Pengfei Zhang, Pan Shen, Rui Wang, Zhexin Ni, Yue Gao\",\"doi\":\"10.1007/s11427-024-2779-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prolonged exposure to high-altitude environments may increase the risk of cognitive decline in young migrants. Recent studies suggest that hypobaric hypoxia-induced alterations in gut microbial composition could partly contribute to this risk. However, the absence of direct evidence from cohort studies and an unclear mechanism hinder intervention development based on this hypothesis. This study recruited 109 young male migrants living in Xizang to investigate the microbial mechanisms underlying cognitive impairment associated with high-altitude migration. Multi-omic analysis revealed distinct microbiome and metabolome features in migrants with cognitive decline, notably a reduced abundance of Clostridium species and disrupted fecal absorption of L-valine. Mechanistic studies showed that hypobaric hypoxia significantly damaged the intestinal barrier, leading to lipopolysaccharide (LPS) leakage and an influx of inflammatory factors into the peripheral blood, which activated microglia and caused neuronal injury in the hippocampus of mice. Additionally, compromised L-valine absorption due to intestinal barrier damage correlated with lower hippocampal glutamate levels and neurotrophic factors. Intervention with Clostridium sp. effectively restored the intestinal barrier and enhanced L-valine absorption, which mitigated hypobaric hypoxia-induced inflammation and hippocampal neural damage in mice. In conclusion, cognitive impairment among young migrants at high altitude may be attributed to hypobaric hypoxia-induced gut microbiota disruption and subsequent intestinal barrier dysfunction. This study may provide a promising approach for preventing and treating high-altitude-associated cognitive impairment.</p>\",\"PeriodicalId\":21576,\"journal\":{\"name\":\"Science China Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11427-024-2779-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11427-024-2779-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Gut microbiota's role in high-altitude cognitive impairment: the therapeutic potential of Clostridium sp. supplementation.
Prolonged exposure to high-altitude environments may increase the risk of cognitive decline in young migrants. Recent studies suggest that hypobaric hypoxia-induced alterations in gut microbial composition could partly contribute to this risk. However, the absence of direct evidence from cohort studies and an unclear mechanism hinder intervention development based on this hypothesis. This study recruited 109 young male migrants living in Xizang to investigate the microbial mechanisms underlying cognitive impairment associated with high-altitude migration. Multi-omic analysis revealed distinct microbiome and metabolome features in migrants with cognitive decline, notably a reduced abundance of Clostridium species and disrupted fecal absorption of L-valine. Mechanistic studies showed that hypobaric hypoxia significantly damaged the intestinal barrier, leading to lipopolysaccharide (LPS) leakage and an influx of inflammatory factors into the peripheral blood, which activated microglia and caused neuronal injury in the hippocampus of mice. Additionally, compromised L-valine absorption due to intestinal barrier damage correlated with lower hippocampal glutamate levels and neurotrophic factors. Intervention with Clostridium sp. effectively restored the intestinal barrier and enhanced L-valine absorption, which mitigated hypobaric hypoxia-induced inflammation and hippocampal neural damage in mice. In conclusion, cognitive impairment among young migrants at high altitude may be attributed to hypobaric hypoxia-induced gut microbiota disruption and subsequent intestinal barrier dysfunction. This study may provide a promising approach for preventing and treating high-altitude-associated cognitive impairment.
期刊介绍:
Science China Life Sciences is a scholarly journal co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and it is published by Science China Press. The journal is dedicated to publishing high-quality, original research findings in both basic and applied life science research.