临床肺炎克雷伯氏菌的多种多糖生产和生物膜形成能力。

IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Robert L Beckman, Elenora Cella, Taj Azarian, Olaya Rendueles, Renee M Fleeman
{"title":"临床肺炎克雷伯氏菌的多种多糖生产和生物膜形成能力。","authors":"Robert L Beckman, Elenora Cella, Taj Azarian, Olaya Rendueles, Renee M Fleeman","doi":"10.1038/s41522-024-00629-y","DOIUrl":null,"url":null,"abstract":"<p><p>Klebsiella pneumoniae infections have become a growing threat for human health. The lack of understanding of the relationship between antibiotic resistance, mucoviscosity, and biofilm formation impedes our abilities to effectively predict K. pneumoniae infection outcomes. The Multidrug-Resistant Organism Repository and Surveillance Network offers a unique opportunity into the genetic and phenotypic variabilities in the K. pneumoniae isolates. To this end, we compared the genetic profiles of these isolates with the phenotypic biofilm formation, percent mucoviscosity, and growth rates. There was a significant phenotype-genotype correlation with decreased biofilm formation and an insertion sequence in the transcriptional activator of the type III fimbrial system. Interestingly, the most mucoid strains in the populations were lacking the genetic element regulating the mucoid phenotype and three of these isolates were able to form robust biofilms. The combination of phenotypic, genomic, and image analyses revealed an intricate relation between growth, mucoviscosity and specific virulence-associated genetic determinants.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"151"},"PeriodicalIF":7.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659406/pdf/","citationCount":"0","resultStr":"{\"title\":\"Diverse polysaccharide production and biofilm formation abilities of clinical Klebsiella pneumoniae.\",\"authors\":\"Robert L Beckman, Elenora Cella, Taj Azarian, Olaya Rendueles, Renee M Fleeman\",\"doi\":\"10.1038/s41522-024-00629-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Klebsiella pneumoniae infections have become a growing threat for human health. The lack of understanding of the relationship between antibiotic resistance, mucoviscosity, and biofilm formation impedes our abilities to effectively predict K. pneumoniae infection outcomes. The Multidrug-Resistant Organism Repository and Surveillance Network offers a unique opportunity into the genetic and phenotypic variabilities in the K. pneumoniae isolates. To this end, we compared the genetic profiles of these isolates with the phenotypic biofilm formation, percent mucoviscosity, and growth rates. There was a significant phenotype-genotype correlation with decreased biofilm formation and an insertion sequence in the transcriptional activator of the type III fimbrial system. Interestingly, the most mucoid strains in the populations were lacking the genetic element regulating the mucoid phenotype and three of these isolates were able to form robust biofilms. The combination of phenotypic, genomic, and image analyses revealed an intricate relation between growth, mucoviscosity and specific virulence-associated genetic determinants.</p>\",\"PeriodicalId\":19370,\"journal\":{\"name\":\"npj Biofilms and Microbiomes\",\"volume\":\"10 1\",\"pages\":\"151\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659406/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biofilms and Microbiomes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41522-024-00629-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-024-00629-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diverse polysaccharide production and biofilm formation abilities of clinical Klebsiella pneumoniae.

Klebsiella pneumoniae infections have become a growing threat for human health. The lack of understanding of the relationship between antibiotic resistance, mucoviscosity, and biofilm formation impedes our abilities to effectively predict K. pneumoniae infection outcomes. The Multidrug-Resistant Organism Repository and Surveillance Network offers a unique opportunity into the genetic and phenotypic variabilities in the K. pneumoniae isolates. To this end, we compared the genetic profiles of these isolates with the phenotypic biofilm formation, percent mucoviscosity, and growth rates. There was a significant phenotype-genotype correlation with decreased biofilm formation and an insertion sequence in the transcriptional activator of the type III fimbrial system. Interestingly, the most mucoid strains in the populations were lacking the genetic element regulating the mucoid phenotype and three of these isolates were able to form robust biofilms. The combination of phenotypic, genomic, and image analyses revealed an intricate relation between growth, mucoviscosity and specific virulence-associated genetic determinants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Biofilms and Microbiomes
npj Biofilms and Microbiomes Immunology and Microbiology-Microbiology
CiteScore
12.10
自引率
3.30%
发文量
91
审稿时长
9 weeks
期刊介绍: npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信