{"title":"海洋哺乳动物单半球慢波睡眠趋同适应的昼夜节律机制。","authors":"Daiqing Yin, Zhenpeng Yu, Haojia Jiang, Yujie Chong, Cuijuan Zhong, Shixia Xu, Guang Yang","doi":"10.1093/molbev/msae257","DOIUrl":null,"url":null,"abstract":"<p><p>Marine mammals have evolved unihemispheric slow wave sleep (USWS), a unique state during which one cerebral hemisphere sleeps while the other remains awake, to mitigate the fundamental conflict between sleep and wakefulness. However, the underlying mechanisms remain largely unclear. Here, we use a comparative phylogenetic approach to analyze genes associated with light-dependent circadian mechanisms, aiming to reconstruct the evolution of the circadian rhythm pathway in mammals and to identify adaptively changed components likely to have contributed to the development of USWS. Specifically, among eight genes with shared signals of positive selection in two USWS-specific lineages, seven genes showed direct evidence of affecting sleep and spontaneous movements. Both in vitro and in vivo experiments indicated that functional innovation in cetacean and non-phocid pinniped FBXL21, which was found to undergo positive selection, may be beneficial for decoupling sleep-wake patterns from daily rhythms to sustain continuous swimming. For cetaceans exhibiting only USWS, we identified 73 genes as rapidly evolving and 92 genes containing unique amino acid substitutions. Functional assays showed that a cetacean-specific mutation (F411Y) in NFIL3 led to a decrease in repressor activity and protein stability. Furthermore, convergent amino acid replacements detected in genes related to Ca2+ signaling and CREB phosphorylation suggest their crucial role in USWS adaptation. Overall, this study enhances our understanding of the evolutionary mechanisms underlying USWS and provides a foundation for investigating how circadian rhythm changes contribute to variations in sleep and circadian behavior.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circadian rhythm mechanisms underlying convergent adaptation of unihemispheric slow-wave sleep in marine mammals.\",\"authors\":\"Daiqing Yin, Zhenpeng Yu, Haojia Jiang, Yujie Chong, Cuijuan Zhong, Shixia Xu, Guang Yang\",\"doi\":\"10.1093/molbev/msae257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Marine mammals have evolved unihemispheric slow wave sleep (USWS), a unique state during which one cerebral hemisphere sleeps while the other remains awake, to mitigate the fundamental conflict between sleep and wakefulness. However, the underlying mechanisms remain largely unclear. Here, we use a comparative phylogenetic approach to analyze genes associated with light-dependent circadian mechanisms, aiming to reconstruct the evolution of the circadian rhythm pathway in mammals and to identify adaptively changed components likely to have contributed to the development of USWS. Specifically, among eight genes with shared signals of positive selection in two USWS-specific lineages, seven genes showed direct evidence of affecting sleep and spontaneous movements. Both in vitro and in vivo experiments indicated that functional innovation in cetacean and non-phocid pinniped FBXL21, which was found to undergo positive selection, may be beneficial for decoupling sleep-wake patterns from daily rhythms to sustain continuous swimming. For cetaceans exhibiting only USWS, we identified 73 genes as rapidly evolving and 92 genes containing unique amino acid substitutions. Functional assays showed that a cetacean-specific mutation (F411Y) in NFIL3 led to a decrease in repressor activity and protein stability. Furthermore, convergent amino acid replacements detected in genes related to Ca2+ signaling and CREB phosphorylation suggest their crucial role in USWS adaptation. Overall, this study enhances our understanding of the evolutionary mechanisms underlying USWS and provides a foundation for investigating how circadian rhythm changes contribute to variations in sleep and circadian behavior.</p>\",\"PeriodicalId\":18730,\"journal\":{\"name\":\"Molecular biology and evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular biology and evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/molbev/msae257\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msae257","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Circadian rhythm mechanisms underlying convergent adaptation of unihemispheric slow-wave sleep in marine mammals.
Marine mammals have evolved unihemispheric slow wave sleep (USWS), a unique state during which one cerebral hemisphere sleeps while the other remains awake, to mitigate the fundamental conflict between sleep and wakefulness. However, the underlying mechanisms remain largely unclear. Here, we use a comparative phylogenetic approach to analyze genes associated with light-dependent circadian mechanisms, aiming to reconstruct the evolution of the circadian rhythm pathway in mammals and to identify adaptively changed components likely to have contributed to the development of USWS. Specifically, among eight genes with shared signals of positive selection in two USWS-specific lineages, seven genes showed direct evidence of affecting sleep and spontaneous movements. Both in vitro and in vivo experiments indicated that functional innovation in cetacean and non-phocid pinniped FBXL21, which was found to undergo positive selection, may be beneficial for decoupling sleep-wake patterns from daily rhythms to sustain continuous swimming. For cetaceans exhibiting only USWS, we identified 73 genes as rapidly evolving and 92 genes containing unique amino acid substitutions. Functional assays showed that a cetacean-specific mutation (F411Y) in NFIL3 led to a decrease in repressor activity and protein stability. Furthermore, convergent amino acid replacements detected in genes related to Ca2+ signaling and CREB phosphorylation suggest their crucial role in USWS adaptation. Overall, this study enhances our understanding of the evolutionary mechanisms underlying USWS and provides a foundation for investigating how circadian rhythm changes contribute to variations in sleep and circadian behavior.
期刊介绍:
Molecular Biology and Evolution
Journal Overview:
Publishes research at the interface of molecular (including genomics) and evolutionary biology
Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic
Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research
Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.