Xiaomin Wu, Huaiming Li, Fengzhen Meng, Tun Hing Lui, Xiaohua Pan
{"title":"来自滑液的外泌体的iTRAQ蛋白质组学分析揭示了骨关节炎的疾病模式和潜在的生物标志物。","authors":"Xiaomin Wu, Huaiming Li, Fengzhen Meng, Tun Hing Lui, Xiaohua Pan","doi":"10.1186/s13018-024-05336-0","DOIUrl":null,"url":null,"abstract":"<p><p>Exosomes extracted from synovial fluid (SF-exo) reflect the status of their originating cells. The proteomic profiles of SF-exo are important for the diagnosis of osteoarthritis (OA). To delineate the proteomic differences between SF-exo from OA patients and healthy individuals, a quantitative proteomic study based on iTRAQ technology was performed. In this study, a total of 439 proteins were identified, with 20 proteins exhibiting increased expression in the OA patient group, while 5 showed decreased expression levels. Bioinformatic analysis showed these differentially expressed proteins (DEPs) were involved in a variety of immune-related processes, including complement activation and antigen binding. For further screening, we downloaded a publicly available dataset of synovial fluid (PXD023708) and compared it with our dataset. The comparative Results identified that 5 DEPs overlapped in two datasets, and protein-protein interaction revealed that C3, C4B and APOM were key members of a tightly interactive network. Through receiver operating characteristic (ROC) curve analysis and enzyme-linked immunosorbent assay (ELISA), we confirmed 5 DEPs (C3, C4B, APOM, MMP3, DPYSL2) as potential diagnostic biomarkers for OA. And Pearson correlation analysis confirmed that most of these biomarkers had no significant linear correlation with age. Overall, our study provides the first comprehensive description of the proteomic landscape of SF-exo in OA and identifies several potential biomarkers. These findings are expected to provide valuable insights into the diagnosis and treatment of OA.</p>","PeriodicalId":16629,"journal":{"name":"Journal of Orthopaedic Surgery and Research","volume":"19 1","pages":"849"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658229/pdf/","citationCount":"0","resultStr":"{\"title\":\"iTRAQ proteomic analysis of exosomes derived from synovial fluid reveals disease patterns and potential biomarkers of Osteoarthritis.\",\"authors\":\"Xiaomin Wu, Huaiming Li, Fengzhen Meng, Tun Hing Lui, Xiaohua Pan\",\"doi\":\"10.1186/s13018-024-05336-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exosomes extracted from synovial fluid (SF-exo) reflect the status of their originating cells. The proteomic profiles of SF-exo are important for the diagnosis of osteoarthritis (OA). To delineate the proteomic differences between SF-exo from OA patients and healthy individuals, a quantitative proteomic study based on iTRAQ technology was performed. In this study, a total of 439 proteins were identified, with 20 proteins exhibiting increased expression in the OA patient group, while 5 showed decreased expression levels. Bioinformatic analysis showed these differentially expressed proteins (DEPs) were involved in a variety of immune-related processes, including complement activation and antigen binding. For further screening, we downloaded a publicly available dataset of synovial fluid (PXD023708) and compared it with our dataset. The comparative Results identified that 5 DEPs overlapped in two datasets, and protein-protein interaction revealed that C3, C4B and APOM were key members of a tightly interactive network. Through receiver operating characteristic (ROC) curve analysis and enzyme-linked immunosorbent assay (ELISA), we confirmed 5 DEPs (C3, C4B, APOM, MMP3, DPYSL2) as potential diagnostic biomarkers for OA. And Pearson correlation analysis confirmed that most of these biomarkers had no significant linear correlation with age. Overall, our study provides the first comprehensive description of the proteomic landscape of SF-exo in OA and identifies several potential biomarkers. These findings are expected to provide valuable insights into the diagnosis and treatment of OA.</p>\",\"PeriodicalId\":16629,\"journal\":{\"name\":\"Journal of Orthopaedic Surgery and Research\",\"volume\":\"19 1\",\"pages\":\"849\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658229/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Orthopaedic Surgery and Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13018-024-05336-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Surgery and Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13018-024-05336-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
iTRAQ proteomic analysis of exosomes derived from synovial fluid reveals disease patterns and potential biomarkers of Osteoarthritis.
Exosomes extracted from synovial fluid (SF-exo) reflect the status of their originating cells. The proteomic profiles of SF-exo are important for the diagnosis of osteoarthritis (OA). To delineate the proteomic differences between SF-exo from OA patients and healthy individuals, a quantitative proteomic study based on iTRAQ technology was performed. In this study, a total of 439 proteins were identified, with 20 proteins exhibiting increased expression in the OA patient group, while 5 showed decreased expression levels. Bioinformatic analysis showed these differentially expressed proteins (DEPs) were involved in a variety of immune-related processes, including complement activation and antigen binding. For further screening, we downloaded a publicly available dataset of synovial fluid (PXD023708) and compared it with our dataset. The comparative Results identified that 5 DEPs overlapped in two datasets, and protein-protein interaction revealed that C3, C4B and APOM were key members of a tightly interactive network. Through receiver operating characteristic (ROC) curve analysis and enzyme-linked immunosorbent assay (ELISA), we confirmed 5 DEPs (C3, C4B, APOM, MMP3, DPYSL2) as potential diagnostic biomarkers for OA. And Pearson correlation analysis confirmed that most of these biomarkers had no significant linear correlation with age. Overall, our study provides the first comprehensive description of the proteomic landscape of SF-exo in OA and identifies several potential biomarkers. These findings are expected to provide valuable insights into the diagnosis and treatment of OA.
期刊介绍:
Journal of Orthopaedic Surgery and Research is an open access journal that encompasses all aspects of clinical and basic research studies related to musculoskeletal issues.
Orthopaedic research is conducted at clinical and basic science levels. With the advancement of new technologies and the increasing expectation and demand from doctors and patients, we are witnessing an enormous growth in clinical orthopaedic research, particularly in the fields of traumatology, spinal surgery, joint replacement, sports medicine, musculoskeletal tumour management, hand microsurgery, foot and ankle surgery, paediatric orthopaedic, and orthopaedic rehabilitation. The involvement of basic science ranges from molecular, cellular, structural and functional perspectives to tissue engineering, gait analysis, automation and robotic surgery. Implant and biomaterial designs are new disciplines that complement clinical applications.
JOSR encourages the publication of multidisciplinary research with collaboration amongst clinicians and scientists from different disciplines, which will be the trend in the coming decades.