Xue Sui, Bingqing Gao, Liu Zhang, Yanmin Wang, Junnan Ma, Xingchen Wu, Chenyu Zhou, Min Liu, Lin Zhang
{"title":"黄芩(Scutellaria barbata D.Don)和白花蛇舌草(Hedyotis diffusa Willd)与顺铂配伍,通过 NRF2-FTH1 自噬降解途径调节氧化应激,从而协同抑制卵巢癌的进展。","authors":"Xue Sui, Bingqing Gao, Liu Zhang, Yanmin Wang, Junnan Ma, Xingchen Wu, Chenyu Zhou, Min Liu, Lin Zhang","doi":"10.1186/s13048-024-01570-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cisplatin (DDP) is one of the most effective anticancer drugs, commonly used to treat advanced ovarian cancer (OC). However, DDP has significant limitations of platinum-based drugs, including chemical resistance and high-dose toxic side effects. Traditional Chinese medicines (TCMs) often presented in the form of formula, in which the herb pair was the basic unit. Scutellaria barbata D.Don and Hedyotis diffusa Willd (SB-HD) are famous TCMs herb pair that have been shown to help treat multiple types of cancers. However, the synergistic effects and mechanism of combination of SB-HD and DDP to enhance DDP chemosensitivity in OC are still unknown.</p><p><strong>Results: </strong>In vitro, we found that the optimal proportion of SB-HD to inhibit the proliferation of OC cells was 2:1, SB-HD and DDP were shown to synergistically reduce the viability of OC cells, inhibit the colony formation, promote cell cycle arrest and apoptosis, as well as inhibit cell migration and invasion. In vivo, combination treatment significantly inhibited the growth of subcutaneous tumors in BALB/c nude mice and reduced the toxic side effects of DDP. Mechanistically, SB-HD and DDP combination treatment significantly promoted oxidative stress response, decreased MMP, inhibited ATP production, decreased ROS levels and increased SOD activity, increased the expression of NRF2, HO-1, ATG5 and LC3, decreased the expression of p62 and FTH1 both in OC cells and tumor tissue of mice. Inhibitor 3-MA (Methyladenine, autophagy inhibitor) and Fer-1 (Ferrostatin-1, iron ion inhibitor) can effectively reverse the expression changes of the key target proteins, but not ZnPP (Zinc protoporphyrin, HO-1 inhibitor). Through bioinformatics analysis, it was found that the abnormal expression level of NRF2 and FTH1 mRNA has a high prognostic value, at the same time, the other four key proteins respectively or interacting with NRF2 and FTH1, also play important roles in the occurrence and development of OC.</p><p><strong>Conclusion: </strong>Our findings uncover a synergistic effect of SB-HD and DDP against OC through modulating oxidative stress via NRF2-FTH1 autophagic degradation pathway, which may provide an important theoretical foundation for the use of SB-HD and a new strategy for enhancing DDP chemosensitivity as well as reducing toxic side effects.</p>","PeriodicalId":16610,"journal":{"name":"Journal of Ovarian Research","volume":"17 1","pages":"246"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658162/pdf/","citationCount":"0","resultStr":"{\"title\":\"Scutellaria barbata D.Don and Hedyotis diffusa Willd herb pair combined with cisplatin synergistically inhibits ovarian cancer progression through modulating oxidative stress via NRF2-FTH1 autophagic degradation pathway.\",\"authors\":\"Xue Sui, Bingqing Gao, Liu Zhang, Yanmin Wang, Junnan Ma, Xingchen Wu, Chenyu Zhou, Min Liu, Lin Zhang\",\"doi\":\"10.1186/s13048-024-01570-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cisplatin (DDP) is one of the most effective anticancer drugs, commonly used to treat advanced ovarian cancer (OC). However, DDP has significant limitations of platinum-based drugs, including chemical resistance and high-dose toxic side effects. Traditional Chinese medicines (TCMs) often presented in the form of formula, in which the herb pair was the basic unit. Scutellaria barbata D.Don and Hedyotis diffusa Willd (SB-HD) are famous TCMs herb pair that have been shown to help treat multiple types of cancers. However, the synergistic effects and mechanism of combination of SB-HD and DDP to enhance DDP chemosensitivity in OC are still unknown.</p><p><strong>Results: </strong>In vitro, we found that the optimal proportion of SB-HD to inhibit the proliferation of OC cells was 2:1, SB-HD and DDP were shown to synergistically reduce the viability of OC cells, inhibit the colony formation, promote cell cycle arrest and apoptosis, as well as inhibit cell migration and invasion. In vivo, combination treatment significantly inhibited the growth of subcutaneous tumors in BALB/c nude mice and reduced the toxic side effects of DDP. Mechanistically, SB-HD and DDP combination treatment significantly promoted oxidative stress response, decreased MMP, inhibited ATP production, decreased ROS levels and increased SOD activity, increased the expression of NRF2, HO-1, ATG5 and LC3, decreased the expression of p62 and FTH1 both in OC cells and tumor tissue of mice. Inhibitor 3-MA (Methyladenine, autophagy inhibitor) and Fer-1 (Ferrostatin-1, iron ion inhibitor) can effectively reverse the expression changes of the key target proteins, but not ZnPP (Zinc protoporphyrin, HO-1 inhibitor). Through bioinformatics analysis, it was found that the abnormal expression level of NRF2 and FTH1 mRNA has a high prognostic value, at the same time, the other four key proteins respectively or interacting with NRF2 and FTH1, also play important roles in the occurrence and development of OC.</p><p><strong>Conclusion: </strong>Our findings uncover a synergistic effect of SB-HD and DDP against OC through modulating oxidative stress via NRF2-FTH1 autophagic degradation pathway, which may provide an important theoretical foundation for the use of SB-HD and a new strategy for enhancing DDP chemosensitivity as well as reducing toxic side effects.</p>\",\"PeriodicalId\":16610,\"journal\":{\"name\":\"Journal of Ovarian Research\",\"volume\":\"17 1\",\"pages\":\"246\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658162/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ovarian Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13048-024-01570-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovarian Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13048-024-01570-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
Scutellaria barbata D.Don and Hedyotis diffusa Willd herb pair combined with cisplatin synergistically inhibits ovarian cancer progression through modulating oxidative stress via NRF2-FTH1 autophagic degradation pathway.
Background: Cisplatin (DDP) is one of the most effective anticancer drugs, commonly used to treat advanced ovarian cancer (OC). However, DDP has significant limitations of platinum-based drugs, including chemical resistance and high-dose toxic side effects. Traditional Chinese medicines (TCMs) often presented in the form of formula, in which the herb pair was the basic unit. Scutellaria barbata D.Don and Hedyotis diffusa Willd (SB-HD) are famous TCMs herb pair that have been shown to help treat multiple types of cancers. However, the synergistic effects and mechanism of combination of SB-HD and DDP to enhance DDP chemosensitivity in OC are still unknown.
Results: In vitro, we found that the optimal proportion of SB-HD to inhibit the proliferation of OC cells was 2:1, SB-HD and DDP were shown to synergistically reduce the viability of OC cells, inhibit the colony formation, promote cell cycle arrest and apoptosis, as well as inhibit cell migration and invasion. In vivo, combination treatment significantly inhibited the growth of subcutaneous tumors in BALB/c nude mice and reduced the toxic side effects of DDP. Mechanistically, SB-HD and DDP combination treatment significantly promoted oxidative stress response, decreased MMP, inhibited ATP production, decreased ROS levels and increased SOD activity, increased the expression of NRF2, HO-1, ATG5 and LC3, decreased the expression of p62 and FTH1 both in OC cells and tumor tissue of mice. Inhibitor 3-MA (Methyladenine, autophagy inhibitor) and Fer-1 (Ferrostatin-1, iron ion inhibitor) can effectively reverse the expression changes of the key target proteins, but not ZnPP (Zinc protoporphyrin, HO-1 inhibitor). Through bioinformatics analysis, it was found that the abnormal expression level of NRF2 and FTH1 mRNA has a high prognostic value, at the same time, the other four key proteins respectively or interacting with NRF2 and FTH1, also play important roles in the occurrence and development of OC.
Conclusion: Our findings uncover a synergistic effect of SB-HD and DDP against OC through modulating oxidative stress via NRF2-FTH1 autophagic degradation pathway, which may provide an important theoretical foundation for the use of SB-HD and a new strategy for enhancing DDP chemosensitivity as well as reducing toxic side effects.
期刊介绍:
Journal of Ovarian Research is an open access, peer reviewed, online journal that aims to provide a forum for high-quality basic and clinical research on ovarian function, abnormalities, and cancer. The journal focuses on research that provides new insights into ovarian functions as well as prevention and treatment of diseases afflicting the organ.
Topical areas include, but are not restricted to:
Ovary development, hormone secretion and regulation
Follicle growth and ovulation
Infertility and Polycystic ovarian syndrome
Regulation of pituitary and other biological functions by ovarian hormones
Ovarian cancer, its prevention, diagnosis and treatment
Drug development and screening
Role of stem cells in ovary development and function.