Amal Babu, Sathiyamoorthy Padmanaban, Sahil Chahal, Adityanarayan Mohapatra, Aravindkumar Sundaram, Chong-Su Cho, In-Kyu Park
{"title":"靶向纳米粒子递送释放出针对肝细胞癌的协同光热和免疫治疗效应。","authors":"Amal Babu, Sathiyamoorthy Padmanaban, Sahil Chahal, Adityanarayan Mohapatra, Aravindkumar Sundaram, Chong-Su Cho, In-Kyu Park","doi":"10.1186/s12951-024-03030-1","DOIUrl":null,"url":null,"abstract":"<p><p>The substantial mortality and morbidity of hepatocellular carcinoma, representing 90% of liver cancers, poses a significant health burden. The effectiveness of traditional hepatocellular carcinoma treatments such as surgical resection, radiotherapy, and chemotherapy is limited, underscoring the need for innovative therapeutic strategies. To this end, we synthesized phthalyl-pullulan nanoparticles encapsulating IR780 (an NIR-responsive heptamethine cyanine dye) and R848 (resiquimod; a TLR7/8 agonist) (PIR NPs). Characterization confirmed the size and loading capacity of PIR NPs, and controlled release of R848 therefrom upon NIR irradiation, thereby establishing the potential of this versatile therapeutic tool. PIR NPs were readily taken up by Hepa 1-6 cells in vitro by targeting asialoglycoprotein receptors present on its cellular surface. In in vivo experiments combining photothermal therapy and immunotherapy, following the local near-infrared irradiation, the PIR NPs accumulated in tumor sites induced immunogenic cell death and activated a tumor-specific T-cell immune response, thus highlighting their potent antitumor efficacy. The combined efficacy of photothermal therapy and immunotherapy presents a promising avenue for addressing the shortcomings of traditional hepatocellular carcinoma interventions. This study contributes valuable insights into the development of more effective and targeted therapeutic approaches for hepatocellular carcinoma treatment.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"778"},"PeriodicalIF":10.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657434/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeted nanoparticle delivery unleashes synergistic photothermal and immunotherapeutic effects against hepatocellular carcinoma.\",\"authors\":\"Amal Babu, Sathiyamoorthy Padmanaban, Sahil Chahal, Adityanarayan Mohapatra, Aravindkumar Sundaram, Chong-Su Cho, In-Kyu Park\",\"doi\":\"10.1186/s12951-024-03030-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The substantial mortality and morbidity of hepatocellular carcinoma, representing 90% of liver cancers, poses a significant health burden. The effectiveness of traditional hepatocellular carcinoma treatments such as surgical resection, radiotherapy, and chemotherapy is limited, underscoring the need for innovative therapeutic strategies. To this end, we synthesized phthalyl-pullulan nanoparticles encapsulating IR780 (an NIR-responsive heptamethine cyanine dye) and R848 (resiquimod; a TLR7/8 agonist) (PIR NPs). Characterization confirmed the size and loading capacity of PIR NPs, and controlled release of R848 therefrom upon NIR irradiation, thereby establishing the potential of this versatile therapeutic tool. PIR NPs were readily taken up by Hepa 1-6 cells in vitro by targeting asialoglycoprotein receptors present on its cellular surface. In in vivo experiments combining photothermal therapy and immunotherapy, following the local near-infrared irradiation, the PIR NPs accumulated in tumor sites induced immunogenic cell death and activated a tumor-specific T-cell immune response, thus highlighting their potent antitumor efficacy. The combined efficacy of photothermal therapy and immunotherapy presents a promising avenue for addressing the shortcomings of traditional hepatocellular carcinoma interventions. This study contributes valuable insights into the development of more effective and targeted therapeutic approaches for hepatocellular carcinoma treatment.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"22 1\",\"pages\":\"778\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657434/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-024-03030-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-03030-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Targeted nanoparticle delivery unleashes synergistic photothermal and immunotherapeutic effects against hepatocellular carcinoma.
The substantial mortality and morbidity of hepatocellular carcinoma, representing 90% of liver cancers, poses a significant health burden. The effectiveness of traditional hepatocellular carcinoma treatments such as surgical resection, radiotherapy, and chemotherapy is limited, underscoring the need for innovative therapeutic strategies. To this end, we synthesized phthalyl-pullulan nanoparticles encapsulating IR780 (an NIR-responsive heptamethine cyanine dye) and R848 (resiquimod; a TLR7/8 agonist) (PIR NPs). Characterization confirmed the size and loading capacity of PIR NPs, and controlled release of R848 therefrom upon NIR irradiation, thereby establishing the potential of this versatile therapeutic tool. PIR NPs were readily taken up by Hepa 1-6 cells in vitro by targeting asialoglycoprotein receptors present on its cellular surface. In in vivo experiments combining photothermal therapy and immunotherapy, following the local near-infrared irradiation, the PIR NPs accumulated in tumor sites induced immunogenic cell death and activated a tumor-specific T-cell immune response, thus highlighting their potent antitumor efficacy. The combined efficacy of photothermal therapy and immunotherapy presents a promising avenue for addressing the shortcomings of traditional hepatocellular carcinoma interventions. This study contributes valuable insights into the development of more effective and targeted therapeutic approaches for hepatocellular carcinoma treatment.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.