用于饮食失调、抑郁症和酒精使用障碍诊断和风险预测的机器学习模型。

IF 4.9 2区 医学 Q1 CLINICAL NEUROLOGY
Journal of affective disorders Pub Date : 2025-06-15 Epub Date: 2024-12-17 DOI:10.1016/j.jad.2024.12.053
Zuo Zhang, Lauren Robinson, Robert Whelan, Lee Jollans, Zijian Wang, Frauke Nees, Congying Chu, Marina Bobou, Dongping Du, Ilinca Cristea, Tobias Banaschewski, Gareth J Barker, Arun L W Bokde, Antoine Grigis, Hugh Garavan, Andreas Heinz, Rüdiger Brühl, Jean-Luc Martinot, Marie-Laure Paillère Martinot, Eric Artiges, Dimitri Papadopoulos Orfanos, Luise Poustka, Sarah Hohmann, Sabina Millenet, Juliane H Fröhner, Michael N Smolka, Nilakshi Vaidya, Henrik Walter, Jeanne Winterer, M John Broulidakis, Betteke Maria van Noort, Argyris Stringaris, Jani Penttilä, Yvonne Grimmer, Corinna Insensee, Andreas Becker, Yuning Zhang, Sinead King, Julia Sinclair, Gunter Schumann, Ulrike Schmidt, Sylvane Desrivières
{"title":"用于饮食失调、抑郁症和酒精使用障碍诊断和风险预测的机器学习模型。","authors":"Zuo Zhang, Lauren Robinson, Robert Whelan, Lee Jollans, Zijian Wang, Frauke Nees, Congying Chu, Marina Bobou, Dongping Du, Ilinca Cristea, Tobias Banaschewski, Gareth J Barker, Arun L W Bokde, Antoine Grigis, Hugh Garavan, Andreas Heinz, Rüdiger Brühl, Jean-Luc Martinot, Marie-Laure Paillère Martinot, Eric Artiges, Dimitri Papadopoulos Orfanos, Luise Poustka, Sarah Hohmann, Sabina Millenet, Juliane H Fröhner, Michael N Smolka, Nilakshi Vaidya, Henrik Walter, Jeanne Winterer, M John Broulidakis, Betteke Maria van Noort, Argyris Stringaris, Jani Penttilä, Yvonne Grimmer, Corinna Insensee, Andreas Becker, Yuning Zhang, Sinead King, Julia Sinclair, Gunter Schumann, Ulrike Schmidt, Sylvane Desrivières","doi":"10.1016/j.jad.2024.12.053","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Early diagnosis and treatment of mental illnesses is hampered by the lack of reliable markers. This study used machine learning models to uncover diagnostic and risk prediction markers for eating disorders (EDs), major depressive disorder (MDD), and alcohol use disorder (AUD).</p><p><strong>Methods: </strong>Case-control samples (aged 18-25 years), including participants with Anorexia Nervosa (AN), Bulimia Nervosa (BN), MDD, AUD, and matched controls, were used for diagnostic classification. For risk prediction, we used a longitudinal population-based sample (IMAGEN study), assessing adolescents at ages 14, 16 and 19. Regularized logistic regression models incorporated broad data domains spanning psychopathology, personality, cognition, substance use, and environment.</p><p><strong>Results: </strong>The classification of EDs was highly accurate, even when excluding body mass index from the analysis. The area under the receiver operating characteristic curves (AUC-ROC [95 % CI]) reached 0.92 [0.86-0.97] for AN and 0.91 [0.85-0.96] for BN. The classification accuracies for MDD (0.91 [0.88-0.94]) and AUD (0.80 [0.74-0.85]) were also high. The models demonstrated high transdiagnostic potential, as those trained for EDs were also accurate in classifying AUD and MDD from healthy controls, and vice versa (AUC-ROCs, 0.75-0.93). Shared predictors, such as neuroticism, hopelessness, and symptoms of attention-deficit/hyperactivity disorder, were identified as reliable classifiers. In the longitudinal population sample, the models exhibited moderate performance in predicting the development of future ED symptoms (0.71 [0.67-0.75]), depressive symptoms (0.64 [0.60-0.68]), and harmful drinking (0.67 [0.64-0.70]).</p><p><strong>Conclusions: </strong>Our findings demonstrate the potential of combining multi-domain data for precise diagnostic and risk prediction applications in psychiatry.</p>","PeriodicalId":14963,"journal":{"name":"Journal of affective disorders","volume":" ","pages":"889-899"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617286/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning models for diagnosis and risk prediction in eating disorders, depression, and alcohol use disorder.\",\"authors\":\"Zuo Zhang, Lauren Robinson, Robert Whelan, Lee Jollans, Zijian Wang, Frauke Nees, Congying Chu, Marina Bobou, Dongping Du, Ilinca Cristea, Tobias Banaschewski, Gareth J Barker, Arun L W Bokde, Antoine Grigis, Hugh Garavan, Andreas Heinz, Rüdiger Brühl, Jean-Luc Martinot, Marie-Laure Paillère Martinot, Eric Artiges, Dimitri Papadopoulos Orfanos, Luise Poustka, Sarah Hohmann, Sabina Millenet, Juliane H Fröhner, Michael N Smolka, Nilakshi Vaidya, Henrik Walter, Jeanne Winterer, M John Broulidakis, Betteke Maria van Noort, Argyris Stringaris, Jani Penttilä, Yvonne Grimmer, Corinna Insensee, Andreas Becker, Yuning Zhang, Sinead King, Julia Sinclair, Gunter Schumann, Ulrike Schmidt, Sylvane Desrivières\",\"doi\":\"10.1016/j.jad.2024.12.053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Early diagnosis and treatment of mental illnesses is hampered by the lack of reliable markers. This study used machine learning models to uncover diagnostic and risk prediction markers for eating disorders (EDs), major depressive disorder (MDD), and alcohol use disorder (AUD).</p><p><strong>Methods: </strong>Case-control samples (aged 18-25 years), including participants with Anorexia Nervosa (AN), Bulimia Nervosa (BN), MDD, AUD, and matched controls, were used for diagnostic classification. For risk prediction, we used a longitudinal population-based sample (IMAGEN study), assessing adolescents at ages 14, 16 and 19. Regularized logistic regression models incorporated broad data domains spanning psychopathology, personality, cognition, substance use, and environment.</p><p><strong>Results: </strong>The classification of EDs was highly accurate, even when excluding body mass index from the analysis. The area under the receiver operating characteristic curves (AUC-ROC [95 % CI]) reached 0.92 [0.86-0.97] for AN and 0.91 [0.85-0.96] for BN. The classification accuracies for MDD (0.91 [0.88-0.94]) and AUD (0.80 [0.74-0.85]) were also high. The models demonstrated high transdiagnostic potential, as those trained for EDs were also accurate in classifying AUD and MDD from healthy controls, and vice versa (AUC-ROCs, 0.75-0.93). Shared predictors, such as neuroticism, hopelessness, and symptoms of attention-deficit/hyperactivity disorder, were identified as reliable classifiers. In the longitudinal population sample, the models exhibited moderate performance in predicting the development of future ED symptoms (0.71 [0.67-0.75]), depressive symptoms (0.64 [0.60-0.68]), and harmful drinking (0.67 [0.64-0.70]).</p><p><strong>Conclusions: </strong>Our findings demonstrate the potential of combining multi-domain data for precise diagnostic and risk prediction applications in psychiatry.</p>\",\"PeriodicalId\":14963,\"journal\":{\"name\":\"Journal of affective disorders\",\"volume\":\" \",\"pages\":\"889-899\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617286/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of affective disorders\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jad.2024.12.053\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of affective disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jad.2024.12.053","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:由于缺乏可靠的标志物,早期诊断和治疗精神疾病受到阻碍。这项研究使用机器学习模型来发现饮食失调(EDs)、重度抑郁症(MDD)和酒精使用障碍(AUD)的诊断和风险预测标记。方法:病例对照样本(年龄18-25岁 ),包括神经性厌食症(AN)、神经性贪食症(BN)、重度抑郁症(MDD)、AUD和匹配对照,进行诊断分类。为了进行风险预测,我们采用了纵向人群样本(IMAGEN研究),评估了14岁、16岁和19岁的青少年。正则化逻辑回归模型纳入了广泛的数据领域,包括精神病理学、人格、认知、物质使用和环境。结果:EDs的分类是高度准确的,即使从分析中排除了身体质量指数。AN的受试者工作特征曲线下面积(AUC-ROC[95 % CI])为0.92 [0.86-0.97],BN为0.91[0.85-0.96]。MDD(0.91[0.88-0.94])和AUD(0.80[0.74-0.85])的分类准确率也很高。这些模型显示出很高的跨诊断潜力,因为那些接受过ed训练的模型也能准确地将AUD和MDD与健康对照组区分开来,反之亦然(auc - roc, 0.75-0.93)。共同的预测因子,如神经质、绝望和注意力缺陷/多动障碍的症状,被确定为可靠的分类因子。在纵向人群样本中,这些模型在预测未来ED症状(0.71[0.67-0.75])、抑郁症状(0.64[0.60-0.68])和有害饮酒(0.67[0.64-0.70])的发展方面表现中等。结论:我们的研究结果表明,结合多领域数据在精神病学中精确诊断和风险预测应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning models for diagnosis and risk prediction in eating disorders, depression, and alcohol use disorder.

Background: Early diagnosis and treatment of mental illnesses is hampered by the lack of reliable markers. This study used machine learning models to uncover diagnostic and risk prediction markers for eating disorders (EDs), major depressive disorder (MDD), and alcohol use disorder (AUD).

Methods: Case-control samples (aged 18-25 years), including participants with Anorexia Nervosa (AN), Bulimia Nervosa (BN), MDD, AUD, and matched controls, were used for diagnostic classification. For risk prediction, we used a longitudinal population-based sample (IMAGEN study), assessing adolescents at ages 14, 16 and 19. Regularized logistic regression models incorporated broad data domains spanning psychopathology, personality, cognition, substance use, and environment.

Results: The classification of EDs was highly accurate, even when excluding body mass index from the analysis. The area under the receiver operating characteristic curves (AUC-ROC [95 % CI]) reached 0.92 [0.86-0.97] for AN and 0.91 [0.85-0.96] for BN. The classification accuracies for MDD (0.91 [0.88-0.94]) and AUD (0.80 [0.74-0.85]) were also high. The models demonstrated high transdiagnostic potential, as those trained for EDs were also accurate in classifying AUD and MDD from healthy controls, and vice versa (AUC-ROCs, 0.75-0.93). Shared predictors, such as neuroticism, hopelessness, and symptoms of attention-deficit/hyperactivity disorder, were identified as reliable classifiers. In the longitudinal population sample, the models exhibited moderate performance in predicting the development of future ED symptoms (0.71 [0.67-0.75]), depressive symptoms (0.64 [0.60-0.68]), and harmful drinking (0.67 [0.64-0.70]).

Conclusions: Our findings demonstrate the potential of combining multi-domain data for precise diagnostic and risk prediction applications in psychiatry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of affective disorders
Journal of affective disorders 医学-精神病学
CiteScore
10.90
自引率
6.10%
发文量
1319
审稿时长
9.3 weeks
期刊介绍: The Journal of Affective Disorders publishes papers concerned with affective disorders in the widest sense: depression, mania, mood spectrum, emotions and personality, anxiety and stress. It is interdisciplinary and aims to bring together different approaches for a diverse readership. Top quality papers will be accepted dealing with any aspect of affective disorders, including neuroimaging, cognitive neurosciences, genetics, molecular biology, experimental and clinical neurosciences, pharmacology, neuroimmunoendocrinology, intervention and treatment trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信