Emma Tassi, Anna Maria Bianchi, Federico Calesella, Benedetta Vai, Marcella Bellani, Igor Nenadić, Fabrizio Piras, Francesco Benedetti, Paolo Brambilla, Eleonora Maggioni
{"title":"基于结构磁共振成像测量的作战协调性能评估。","authors":"Emma Tassi, Anna Maria Bianchi, Federico Calesella, Benedetta Vai, Marcella Bellani, Igor Nenadić, Fabrizio Piras, Francesco Benedetti, Paolo Brambilla, Eleonora Maggioni","doi":"10.1002/hbm.70085","DOIUrl":null,"url":null,"abstract":"<p>Data aggregation across multiple research centers is gaining importance in the context of MRI research, driving diverse high-dimensional datasets to form large-scale heterogeneous sample, increasing statistical power and relevance of machine learning and deep learning algorithm. Site-related effects have been demonstrated to introduce bias in MRI features and confound subsequent analyses. Although Combating Batch (ComBat) technique has been recently reported to successfully harmonize multi-scale neuroimaging features, its performance assessments are still limited and largely based on qualitative visualizations and statistical analyses. In this study, we stand out by using a robust cross-validation approach to assess ComBat performances applied on volume- and surface-based measures acquired across three sites. A machine learning approach based on Multi-Class Gaussian Process Classifier was applied to predict imaging site based on raw and harmonized brain features, providing quantitative insights into ComBat effectiveness, and verifying the association between biological covariates and harmonized brain features. Our findings showed differences in terms of ComBat performances across measures of regional brain morphology, demonstrating tissue specific site effect modeling. ComBat adjustment of site effects also varied across regional level of each specific volume-based and surface-based measures. ComBat effectively eliminates unwanted data site-related variability, by maintaining or even enhancing data association with biological factors. Of note, ComBat has demonstrated flexibility and robustness of application on unseen independent gray matter volume data from the same sites.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"45 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70085","citationCount":"0","resultStr":"{\"title\":\"Assessment of ComBat Harmonization Performance on Structural Magnetic Resonance Imaging Measurements\",\"authors\":\"Emma Tassi, Anna Maria Bianchi, Federico Calesella, Benedetta Vai, Marcella Bellani, Igor Nenadić, Fabrizio Piras, Francesco Benedetti, Paolo Brambilla, Eleonora Maggioni\",\"doi\":\"10.1002/hbm.70085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Data aggregation across multiple research centers is gaining importance in the context of MRI research, driving diverse high-dimensional datasets to form large-scale heterogeneous sample, increasing statistical power and relevance of machine learning and deep learning algorithm. Site-related effects have been demonstrated to introduce bias in MRI features and confound subsequent analyses. Although Combating Batch (ComBat) technique has been recently reported to successfully harmonize multi-scale neuroimaging features, its performance assessments are still limited and largely based on qualitative visualizations and statistical analyses. In this study, we stand out by using a robust cross-validation approach to assess ComBat performances applied on volume- and surface-based measures acquired across three sites. A machine learning approach based on Multi-Class Gaussian Process Classifier was applied to predict imaging site based on raw and harmonized brain features, providing quantitative insights into ComBat effectiveness, and verifying the association between biological covariates and harmonized brain features. Our findings showed differences in terms of ComBat performances across measures of regional brain morphology, demonstrating tissue specific site effect modeling. ComBat adjustment of site effects also varied across regional level of each specific volume-based and surface-based measures. ComBat effectively eliminates unwanted data site-related variability, by maintaining or even enhancing data association with biological factors. Of note, ComBat has demonstrated flexibility and robustness of application on unseen independent gray matter volume data from the same sites.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"45 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70085\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70085\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70085","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Assessment of ComBat Harmonization Performance on Structural Magnetic Resonance Imaging Measurements
Data aggregation across multiple research centers is gaining importance in the context of MRI research, driving diverse high-dimensional datasets to form large-scale heterogeneous sample, increasing statistical power and relevance of machine learning and deep learning algorithm. Site-related effects have been demonstrated to introduce bias in MRI features and confound subsequent analyses. Although Combating Batch (ComBat) technique has been recently reported to successfully harmonize multi-scale neuroimaging features, its performance assessments are still limited and largely based on qualitative visualizations and statistical analyses. In this study, we stand out by using a robust cross-validation approach to assess ComBat performances applied on volume- and surface-based measures acquired across three sites. A machine learning approach based on Multi-Class Gaussian Process Classifier was applied to predict imaging site based on raw and harmonized brain features, providing quantitative insights into ComBat effectiveness, and verifying the association between biological covariates and harmonized brain features. Our findings showed differences in terms of ComBat performances across measures of regional brain morphology, demonstrating tissue specific site effect modeling. ComBat adjustment of site effects also varied across regional level of each specific volume-based and surface-based measures. ComBat effectively eliminates unwanted data site-related variability, by maintaining or even enhancing data association with biological factors. Of note, ComBat has demonstrated flexibility and robustness of application on unseen independent gray matter volume data from the same sites.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.