Jiahui Wu, Hui Peng, Peng Cheng, Hongmei Liu, Ye Zhang, Maoqing Gong
{"title":"拟除虫菊酯的微生物降解机制、降解途径和基因工程:现有知识和未来展望。","authors":"Jiahui Wu, Hui Peng, Peng Cheng, Hongmei Liu, Ye Zhang, Maoqing Gong","doi":"10.1080/10408444.2024.2433632","DOIUrl":null,"url":null,"abstract":"<p><p>Pyrethroids are synthetic products derived from natural pyrethroids present in flowers and are extensively used as pesticides for agriculture, animal husbandry, and household pest control. However, excessive and prolonged usage of pyrethroid insecticides can result in adverse effects on both non-target and target species. Therefore, effective technologies need to be developed to remove pyrethroid contamination and ensure environmental safety. Microbial remediation of various pesticide contaminants is highly practicable, low cost, and eco-friendly compared to physical and chemical methods. Different microbiota are screened to eliminate or degrade the contaminants. Microbial remediation technology utilizes the natural ability of microbiota to treat contaminated areas. Previous studies have mostly focused on the isolation and screening of microorganisms for pyrethroid biodegradation, as well as on the kinetics and pathways of pyrethroid biodegradation. In order to develop effective bioremediation strategies, further research based on molecular biology and bioengineering is required for a comprehensive exploration of pyrethroid-degrading microorganisms. To date, the microbial degradation of pyrethroid pesticides and the underlying mechanisms have been rarely reviewed. Therefore, this critical review encompasses the latest knowledge on synthetic pyrethroids from structural properties, bio-toxicity, and characterization of microbial degradation strains to degradation characteristics, intrinsic mechanisms, and microbial degradation pathways. The future of microbial remediation depends on combining advanced gene technology with traditional bioremediation methods to sustainably degrade pesticide contaminants. It also summarizes the factors affecting degradation efficiency and concludes with prospects, along with current challenges and limitations.</p>","PeriodicalId":10869,"journal":{"name":"Critical Reviews in Toxicology","volume":" ","pages":"1-25"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial degradation mechanisms, degradation pathways, and genetic engineering for pyrethroids: current knowledge and future perspectives.\",\"authors\":\"Jiahui Wu, Hui Peng, Peng Cheng, Hongmei Liu, Ye Zhang, Maoqing Gong\",\"doi\":\"10.1080/10408444.2024.2433632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pyrethroids are synthetic products derived from natural pyrethroids present in flowers and are extensively used as pesticides for agriculture, animal husbandry, and household pest control. However, excessive and prolonged usage of pyrethroid insecticides can result in adverse effects on both non-target and target species. Therefore, effective technologies need to be developed to remove pyrethroid contamination and ensure environmental safety. Microbial remediation of various pesticide contaminants is highly practicable, low cost, and eco-friendly compared to physical and chemical methods. Different microbiota are screened to eliminate or degrade the contaminants. Microbial remediation technology utilizes the natural ability of microbiota to treat contaminated areas. Previous studies have mostly focused on the isolation and screening of microorganisms for pyrethroid biodegradation, as well as on the kinetics and pathways of pyrethroid biodegradation. In order to develop effective bioremediation strategies, further research based on molecular biology and bioengineering is required for a comprehensive exploration of pyrethroid-degrading microorganisms. To date, the microbial degradation of pyrethroid pesticides and the underlying mechanisms have been rarely reviewed. Therefore, this critical review encompasses the latest knowledge on synthetic pyrethroids from structural properties, bio-toxicity, and characterization of microbial degradation strains to degradation characteristics, intrinsic mechanisms, and microbial degradation pathways. The future of microbial remediation depends on combining advanced gene technology with traditional bioremediation methods to sustainably degrade pesticide contaminants. It also summarizes the factors affecting degradation efficiency and concludes with prospects, along with current challenges and limitations.</p>\",\"PeriodicalId\":10869,\"journal\":{\"name\":\"Critical Reviews in Toxicology\",\"volume\":\" \",\"pages\":\"1-25\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10408444.2024.2433632\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10408444.2024.2433632","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Microbial degradation mechanisms, degradation pathways, and genetic engineering for pyrethroids: current knowledge and future perspectives.
Pyrethroids are synthetic products derived from natural pyrethroids present in flowers and are extensively used as pesticides for agriculture, animal husbandry, and household pest control. However, excessive and prolonged usage of pyrethroid insecticides can result in adverse effects on both non-target and target species. Therefore, effective technologies need to be developed to remove pyrethroid contamination and ensure environmental safety. Microbial remediation of various pesticide contaminants is highly practicable, low cost, and eco-friendly compared to physical and chemical methods. Different microbiota are screened to eliminate or degrade the contaminants. Microbial remediation technology utilizes the natural ability of microbiota to treat contaminated areas. Previous studies have mostly focused on the isolation and screening of microorganisms for pyrethroid biodegradation, as well as on the kinetics and pathways of pyrethroid biodegradation. In order to develop effective bioremediation strategies, further research based on molecular biology and bioengineering is required for a comprehensive exploration of pyrethroid-degrading microorganisms. To date, the microbial degradation of pyrethroid pesticides and the underlying mechanisms have been rarely reviewed. Therefore, this critical review encompasses the latest knowledge on synthetic pyrethroids from structural properties, bio-toxicity, and characterization of microbial degradation strains to degradation characteristics, intrinsic mechanisms, and microbial degradation pathways. The future of microbial remediation depends on combining advanced gene technology with traditional bioremediation methods to sustainably degrade pesticide contaminants. It also summarizes the factors affecting degradation efficiency and concludes with prospects, along with current challenges and limitations.
期刊介绍:
Critical Reviews in Toxicology provides up-to-date, objective analyses of topics related to the mechanisms of action, responses, and assessment of health risks due to toxicant exposure. The journal publishes critical, comprehensive reviews of research findings in toxicology and the application of toxicological information in assessing human health hazards and risks. Toxicants of concern include commodity and specialty chemicals such as formaldehyde, acrylonitrile, and pesticides; pharmaceutical agents of all types; consumer products such as macronutrients and food additives; environmental agents such as ambient ozone; and occupational exposures such as asbestos and benzene.