{"title":"具有重要经济价值的 C4 禾本科植物 Miscanthus 的寒冷和黑暗调节光保护。","authors":"Jared Haupt, Katarzyna Glowacka","doi":"10.1038/s42003-024-07320-0","DOIUrl":null,"url":null,"abstract":"<p><p>Tolerance of chilling dictates the geographical distribution, establishment, and productivity of C<sub>4</sub> crops. Chilling reduces enzyme rate, limiting the sink for the absorbed light energy leading to the need for quick energy dissipation via non-photochemical quenching (NPQ). Here, we characterize NPQ upon chilling in three Miscanthus accessions representing diverse chilling tolerance in C<sub>4</sub> grasses. High chilling tolerant accessions accumulate substantial amounts of zeaxanthin during chilling nights in both field and growth chamber settings. Chilling-induced zeaxanthin accumulation in the dark enhances rate of NPQ induction by 66% in the following morning. Based on our data, the emerging ways for the unique regulation of NPQ include post-translational regulation of violaxanthin de-epoxidase (VDE), VDE cofactor accessibility, and absence of transcriptional upregulation of zeaxanthin conversion back to violaxanthin. In the future, more studies will be required to obtain further evidence for these ways contributions to the chilling-dark regulation of NPQ. Engineering dark accumulation of zeaxanthin will help improve crop chilling tolerance and promote sustainable production by allowing early spring planting to maximize the use of early-season soil moisture. Driving the engineered trait by chilling inducible promoter would ensure the minimization of a trade-off between photoprotection and photosynthesis efficiency.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"7 1","pages":"1660"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chilling- and dark-regulated photoprotection in Miscanthus, an economically important C<sub>4</sub> grass.\",\"authors\":\"Jared Haupt, Katarzyna Glowacka\",\"doi\":\"10.1038/s42003-024-07320-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tolerance of chilling dictates the geographical distribution, establishment, and productivity of C<sub>4</sub> crops. Chilling reduces enzyme rate, limiting the sink for the absorbed light energy leading to the need for quick energy dissipation via non-photochemical quenching (NPQ). Here, we characterize NPQ upon chilling in three Miscanthus accessions representing diverse chilling tolerance in C<sub>4</sub> grasses. High chilling tolerant accessions accumulate substantial amounts of zeaxanthin during chilling nights in both field and growth chamber settings. Chilling-induced zeaxanthin accumulation in the dark enhances rate of NPQ induction by 66% in the following morning. Based on our data, the emerging ways for the unique regulation of NPQ include post-translational regulation of violaxanthin de-epoxidase (VDE), VDE cofactor accessibility, and absence of transcriptional upregulation of zeaxanthin conversion back to violaxanthin. In the future, more studies will be required to obtain further evidence for these ways contributions to the chilling-dark regulation of NPQ. Engineering dark accumulation of zeaxanthin will help improve crop chilling tolerance and promote sustainable production by allowing early spring planting to maximize the use of early-season soil moisture. Driving the engineered trait by chilling inducible promoter would ensure the minimization of a trade-off between photoprotection and photosynthesis efficiency.</p>\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":\"7 1\",\"pages\":\"1660\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s42003-024-07320-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-024-07320-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Chilling- and dark-regulated photoprotection in Miscanthus, an economically important C4 grass.
Tolerance of chilling dictates the geographical distribution, establishment, and productivity of C4 crops. Chilling reduces enzyme rate, limiting the sink for the absorbed light energy leading to the need for quick energy dissipation via non-photochemical quenching (NPQ). Here, we characterize NPQ upon chilling in three Miscanthus accessions representing diverse chilling tolerance in C4 grasses. High chilling tolerant accessions accumulate substantial amounts of zeaxanthin during chilling nights in both field and growth chamber settings. Chilling-induced zeaxanthin accumulation in the dark enhances rate of NPQ induction by 66% in the following morning. Based on our data, the emerging ways for the unique regulation of NPQ include post-translational regulation of violaxanthin de-epoxidase (VDE), VDE cofactor accessibility, and absence of transcriptional upregulation of zeaxanthin conversion back to violaxanthin. In the future, more studies will be required to obtain further evidence for these ways contributions to the chilling-dark regulation of NPQ. Engineering dark accumulation of zeaxanthin will help improve crop chilling tolerance and promote sustainable production by allowing early spring planting to maximize the use of early-season soil moisture. Driving the engineered trait by chilling inducible promoter would ensure the minimization of a trade-off between photoprotection and photosynthesis efficiency.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.