Beat Knechtle, Elias Villiger, David Valero, Lorin Braschler, Katja Weiss, Rodrigo Luiz Vancini, Marilia S Andrade, Volker Scheer, Pantelis T Nikolaidis, Ivan Cuk, Thomas Rosemann, Mabliny Thuany
{"title":"使用预测XG boost模型分析10天超级马拉松。","authors":"Beat Knechtle, Elias Villiger, David Valero, Lorin Braschler, Katja Weiss, Rodrigo Luiz Vancini, Marilia S Andrade, Volker Scheer, Pantelis T Nikolaidis, Ivan Cuk, Thomas Rosemann, Mabliny Thuany","doi":"10.1186/s13104-024-07028-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Ultra-marathon running races are held as distance-limited or time-limited events, ranging from 6 h to 10 days. Only a few runners compete in 10-day events, and so far, we have little knowledge about the athletes' origins, performance, and event characteristics. The aim of the present study was to investigate the origin and performance of these runners and the fastest race locations. A machine learning model based on the XG Boost algorithm was built to predict running speed from the athlete´s age, gender, country of origin, country where the race takes place, the type of race and the kind of running surface. The model explainability tools were then used to investigate how each independent variable would influence the predicted running speed.</p><p><strong>Results: </strong>The model rated the origin of the athlete as the most important predictor, followed by age group, running on dirt path, gender, running on asphalt, and event location. Running on dirt path led to a significant reduction of running speed, while running on asphalt showed faster running speeds compared to other surfaces. Most athletes came from USA, followed by Russia, Germany, Ukraine, the Czech Republic, and Slovakia. Most of the runners competed in USA. The fastest 10-day runners were from Finland and Israel. The fastest 10-day races were held in Greece.</p><p><strong>Conclusions: </strong>Most 10-day runners originated from USA, but the fastest runners originate from Finland and Israel. The fastest race courses were in Greece. Running on dirt paths leads to a significant reduction in running speed while running on asphalt leads to faster running speeds.</p>","PeriodicalId":9234,"journal":{"name":"BMC Research Notes","volume":"17 1","pages":"372"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660604/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of the 10-day ultra-marathon using a predictive XG boost model.\",\"authors\":\"Beat Knechtle, Elias Villiger, David Valero, Lorin Braschler, Katja Weiss, Rodrigo Luiz Vancini, Marilia S Andrade, Volker Scheer, Pantelis T Nikolaidis, Ivan Cuk, Thomas Rosemann, Mabliny Thuany\",\"doi\":\"10.1186/s13104-024-07028-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Ultra-marathon running races are held as distance-limited or time-limited events, ranging from 6 h to 10 days. Only a few runners compete in 10-day events, and so far, we have little knowledge about the athletes' origins, performance, and event characteristics. The aim of the present study was to investigate the origin and performance of these runners and the fastest race locations. A machine learning model based on the XG Boost algorithm was built to predict running speed from the athlete´s age, gender, country of origin, country where the race takes place, the type of race and the kind of running surface. The model explainability tools were then used to investigate how each independent variable would influence the predicted running speed.</p><p><strong>Results: </strong>The model rated the origin of the athlete as the most important predictor, followed by age group, running on dirt path, gender, running on asphalt, and event location. Running on dirt path led to a significant reduction of running speed, while running on asphalt showed faster running speeds compared to other surfaces. Most athletes came from USA, followed by Russia, Germany, Ukraine, the Czech Republic, and Slovakia. Most of the runners competed in USA. The fastest 10-day runners were from Finland and Israel. The fastest 10-day races were held in Greece.</p><p><strong>Conclusions: </strong>Most 10-day runners originated from USA, but the fastest runners originate from Finland and Israel. The fastest race courses were in Greece. Running on dirt paths leads to a significant reduction in running speed while running on asphalt leads to faster running speeds.</p>\",\"PeriodicalId\":9234,\"journal\":{\"name\":\"BMC Research Notes\",\"volume\":\"17 1\",\"pages\":\"372\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660604/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Research Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13104-024-07028-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Research Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13104-024-07028-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Analysis of the 10-day ultra-marathon using a predictive XG boost model.
Objective: Ultra-marathon running races are held as distance-limited or time-limited events, ranging from 6 h to 10 days. Only a few runners compete in 10-day events, and so far, we have little knowledge about the athletes' origins, performance, and event characteristics. The aim of the present study was to investigate the origin and performance of these runners and the fastest race locations. A machine learning model based on the XG Boost algorithm was built to predict running speed from the athlete´s age, gender, country of origin, country where the race takes place, the type of race and the kind of running surface. The model explainability tools were then used to investigate how each independent variable would influence the predicted running speed.
Results: The model rated the origin of the athlete as the most important predictor, followed by age group, running on dirt path, gender, running on asphalt, and event location. Running on dirt path led to a significant reduction of running speed, while running on asphalt showed faster running speeds compared to other surfaces. Most athletes came from USA, followed by Russia, Germany, Ukraine, the Czech Republic, and Slovakia. Most of the runners competed in USA. The fastest 10-day runners were from Finland and Israel. The fastest 10-day races were held in Greece.
Conclusions: Most 10-day runners originated from USA, but the fastest runners originate from Finland and Israel. The fastest race courses were in Greece. Running on dirt paths leads to a significant reduction in running speed while running on asphalt leads to faster running speeds.
BMC Research NotesBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.60
自引率
0.00%
发文量
363
审稿时长
15 weeks
期刊介绍:
BMC Research Notes publishes scientifically valid research outputs that cannot be considered as full research or methodology articles. We support the research community across all scientific and clinical disciplines by providing an open access forum for sharing data and useful information; this includes, but is not limited to, updates to previous work, additions to established methods, short publications, null results, research proposals and data management plans.