老化和年轻骨髓间充质干细胞分泌的细胞外小泡在骨关节炎发病机制中的治疗潜力比较分析》(Comparative Analysis of Therapeutential Extracellular Vesicles Secreted by Aged and Young Bone Marrow-Derived Mesenchymal Stem Cells in Osteoarthritis Pathogenesis)。
Shital Wakale, Yang Chen, Antonia Rujia Sun, Chamikara Liyanage, Jennifer Gunter, Jyotsna Batra, Ross Crawford, Hongxun Sang, Indira Prasadam
{"title":"老化和年轻骨髓间充质干细胞分泌的细胞外小泡在骨关节炎发病机制中的治疗潜力比较分析》(Comparative Analysis of Therapeutential Extracellular Vesicles Secreted by Aged and Young Bone Marrow-Derived Mesenchymal Stem Cells in Osteoarthritis Pathogenesis)。","authors":"Shital Wakale, Yang Chen, Antonia Rujia Sun, Chamikara Liyanage, Jennifer Gunter, Jyotsna Batra, Ross Crawford, Hongxun Sang, Indira Prasadam","doi":"10.1111/cpr.13776","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA), a joint disease, burdens global healthcare due to aging and obesity. Recent studies show that extracellular vesicles (EVs) from bone marrow-derived mesenchymal stem cells (BMSCs) contribute to joint homeostasis and OA management. However, the impact of donor age on BMSC-derived EV efficacy remains underexplored. In this study, we investigated EV efficacy from young BMSCs (2-month-old) in mitigating OA, contrasting them with EVs from aged BMSCs (27-month-old). The study used destabilisation of the medial meniscus (DMM) surgery on mouse knee joints to induce accelerated OA. Cartilage degeneration markers and senescence markers' expression levels were investigated in response to EV treatment. The therapeutic impact of EVs on chondrocytes under inflammatory responses was also evaluated. Despite having similar morphologies, EVs from young BMSCs markedly decreased senescence and improved chondroprotection by activating the PTEN pathway while simultaneously suppressing the upregulation of the PI3K/AKT pathways, proving to be more effective than those from older BMSCs in vitro. Furthermore, intraperitoneal injections of EVs from young donors significantly mitigated OA progression by preserving cartilage and reducing synovitis in a surgical OA model using DMM in mice. These findings highlight that donor age as a critical determinant in the therapeutic potential of BMSC-derived EVs for clinical use in OA treatment.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13776"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of the Therapeutic Potential of Extracellular Vesicles Secreted by Aged and Young Bone Marrow-Derived Mesenchymal Stem Cells in Osteoarthritis Pathogenesis.\",\"authors\":\"Shital Wakale, Yang Chen, Antonia Rujia Sun, Chamikara Liyanage, Jennifer Gunter, Jyotsna Batra, Ross Crawford, Hongxun Sang, Indira Prasadam\",\"doi\":\"10.1111/cpr.13776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoarthritis (OA), a joint disease, burdens global healthcare due to aging and obesity. Recent studies show that extracellular vesicles (EVs) from bone marrow-derived mesenchymal stem cells (BMSCs) contribute to joint homeostasis and OA management. However, the impact of donor age on BMSC-derived EV efficacy remains underexplored. In this study, we investigated EV efficacy from young BMSCs (2-month-old) in mitigating OA, contrasting them with EVs from aged BMSCs (27-month-old). The study used destabilisation of the medial meniscus (DMM) surgery on mouse knee joints to induce accelerated OA. Cartilage degeneration markers and senescence markers' expression levels were investigated in response to EV treatment. The therapeutic impact of EVs on chondrocytes under inflammatory responses was also evaluated. Despite having similar morphologies, EVs from young BMSCs markedly decreased senescence and improved chondroprotection by activating the PTEN pathway while simultaneously suppressing the upregulation of the PI3K/AKT pathways, proving to be more effective than those from older BMSCs in vitro. Furthermore, intraperitoneal injections of EVs from young donors significantly mitigated OA progression by preserving cartilage and reducing synovitis in a surgical OA model using DMM in mice. These findings highlight that donor age as a critical determinant in the therapeutic potential of BMSC-derived EVs for clinical use in OA treatment.</p>\",\"PeriodicalId\":9760,\"journal\":{\"name\":\"Cell Proliferation\",\"volume\":\" \",\"pages\":\"e13776\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Proliferation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/cpr.13776\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.13776","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Comparative Analysis of the Therapeutic Potential of Extracellular Vesicles Secreted by Aged and Young Bone Marrow-Derived Mesenchymal Stem Cells in Osteoarthritis Pathogenesis.
Osteoarthritis (OA), a joint disease, burdens global healthcare due to aging and obesity. Recent studies show that extracellular vesicles (EVs) from bone marrow-derived mesenchymal stem cells (BMSCs) contribute to joint homeostasis and OA management. However, the impact of donor age on BMSC-derived EV efficacy remains underexplored. In this study, we investigated EV efficacy from young BMSCs (2-month-old) in mitigating OA, contrasting them with EVs from aged BMSCs (27-month-old). The study used destabilisation of the medial meniscus (DMM) surgery on mouse knee joints to induce accelerated OA. Cartilage degeneration markers and senescence markers' expression levels were investigated in response to EV treatment. The therapeutic impact of EVs on chondrocytes under inflammatory responses was also evaluated. Despite having similar morphologies, EVs from young BMSCs markedly decreased senescence and improved chondroprotection by activating the PTEN pathway while simultaneously suppressing the upregulation of the PI3K/AKT pathways, proving to be more effective than those from older BMSCs in vitro. Furthermore, intraperitoneal injections of EVs from young donors significantly mitigated OA progression by preserving cartilage and reducing synovitis in a surgical OA model using DMM in mice. These findings highlight that donor age as a critical determinant in the therapeutic potential of BMSC-derived EVs for clinical use in OA treatment.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.