作为认知生物标记的听觉脑干反应

IF 5.2 1区 生物学 Q1 BIOLOGY
Yasmeen Hamza, Ye Yang, Janie Vu, Antoinette Abdelmalek, Mobina Malekifar, Carol A Barnes, Fan-Gang Zeng
{"title":"作为认知生物标记的听觉脑干反应","authors":"Yasmeen Hamza, Ye Yang, Janie Vu, Antoinette Abdelmalek, Mobina Malekifar, Carol A Barnes, Fan-Gang Zeng","doi":"10.1038/s42003-024-07346-4","DOIUrl":null,"url":null,"abstract":"<p><p>A non-invasive, accessible and effective biomarker is critical to the diagnosis, monitoring and treatment of age-related cognitive decline. Recent work has suggested a strong association between auditory brainstem responses (ABR) and cognitive function in aging macaques. Here we show in 118 human participants (66 females; age range=18-92 years; hearing loss = -5 to 70 dB HL) that cognition is associated with both age and hearing level, but this triad relationship is mainly driven by the age factor. After adjusting for age, cognition is still significantly associated with both the ABR wave V amplitude (B, 0.110, 95% CI, 0.018- 0.202; p = 0.020) and latency (B, -0.101, 95% CI, -0.186- -0.016; p = 0.021). Importantly, this age-adjusted ABR-cognition association is primarily driven by older individuals and language-dependent cognitive functions. We also perform the area under the curve (AUC) of the receiver-operating-characteristic analysis and find that the ABR wave V amplitude is best for detecting good cognitive performers (AUC = 0.96) whereas the wave V latency is best for detecting poor ones (AUC = 0.86). The present result not only confirms the previous animal work in humans but also shows the clinical potential of using auditory brainstem responses to improve diagnosis and treatment of age-related cognitive decline.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"7 1","pages":"1653"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auditory brainstem responses as a biomarker for cognition.\",\"authors\":\"Yasmeen Hamza, Ye Yang, Janie Vu, Antoinette Abdelmalek, Mobina Malekifar, Carol A Barnes, Fan-Gang Zeng\",\"doi\":\"10.1038/s42003-024-07346-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A non-invasive, accessible and effective biomarker is critical to the diagnosis, monitoring and treatment of age-related cognitive decline. Recent work has suggested a strong association between auditory brainstem responses (ABR) and cognitive function in aging macaques. Here we show in 118 human participants (66 females; age range=18-92 years; hearing loss = -5 to 70 dB HL) that cognition is associated with both age and hearing level, but this triad relationship is mainly driven by the age factor. After adjusting for age, cognition is still significantly associated with both the ABR wave V amplitude (B, 0.110, 95% CI, 0.018- 0.202; p = 0.020) and latency (B, -0.101, 95% CI, -0.186- -0.016; p = 0.021). Importantly, this age-adjusted ABR-cognition association is primarily driven by older individuals and language-dependent cognitive functions. We also perform the area under the curve (AUC) of the receiver-operating-characteristic analysis and find that the ABR wave V amplitude is best for detecting good cognitive performers (AUC = 0.96) whereas the wave V latency is best for detecting poor ones (AUC = 0.86). The present result not only confirms the previous animal work in humans but also shows the clinical potential of using auditory brainstem responses to improve diagnosis and treatment of age-related cognitive decline.</p>\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":\"7 1\",\"pages\":\"1653\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s42003-024-07346-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-024-07346-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auditory brainstem responses as a biomarker for cognition.

A non-invasive, accessible and effective biomarker is critical to the diagnosis, monitoring and treatment of age-related cognitive decline. Recent work has suggested a strong association between auditory brainstem responses (ABR) and cognitive function in aging macaques. Here we show in 118 human participants (66 females; age range=18-92 years; hearing loss = -5 to 70 dB HL) that cognition is associated with both age and hearing level, but this triad relationship is mainly driven by the age factor. After adjusting for age, cognition is still significantly associated with both the ABR wave V amplitude (B, 0.110, 95% CI, 0.018- 0.202; p = 0.020) and latency (B, -0.101, 95% CI, -0.186- -0.016; p = 0.021). Importantly, this age-adjusted ABR-cognition association is primarily driven by older individuals and language-dependent cognitive functions. We also perform the area under the curve (AUC) of the receiver-operating-characteristic analysis and find that the ABR wave V amplitude is best for detecting good cognitive performers (AUC = 0.96) whereas the wave V latency is best for detecting poor ones (AUC = 0.86). The present result not only confirms the previous animal work in humans but also shows the clinical potential of using auditory brainstem responses to improve diagnosis and treatment of age-related cognitive decline.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信