语言能力与颞横回的解剖结构有关。

IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY
Carmen Ramoser, Aileen Fischer, Johanneke Caspers, Niels O Schiller, Narly Golestani, Olga Kepinska
{"title":"语言能力与颞横回的解剖结构有关。","authors":"Carmen Ramoser, Aileen Fischer, Johanneke Caspers, Niels O Schiller, Narly Golestani, Olga Kepinska","doi":"10.1007/s00429-024-02883-4","DOIUrl":null,"url":null,"abstract":"<p><p>Why is it that some people seem to learn new languages faster and more easily than others? The present study investigates the neuroanatomical basis of language learning aptitude, with a focus on the multiplication pattern of the transverse temporal gyrus/gyri (TTG/TTGs) of the auditory cortex. The size and multiplication pattern of the first TTG (i.e., Heschl's gyrus; HG) and of additional posterior TTGs, when present, are highly variable both between brain hemispheres and individuals. Previous work has shown the multiplication pattern of the TTGs to be related to musical and linguistic abilities. Specifically, one study found that high language learning aptitude correlated with more TTGs in the right hemisphere, even though language functions are generally left-lateralized. In this study, we used the recently developed TASH (Toolbox for the Automated Segmentation of Heschl's Gyrus) and MCAI (Multivariate Concavity Amplitude Index) toolboxes to automatically extract structural (e.g., cortical volume, surface area, thickness) and multiplication pattern measures of the TTGs from 82 MRI scans, and related them to participants' language aptitude scores. In contrast to previous results, we found that higher language aptitude was related to fewer TTGs in the right hemisphere and to greater surface area of the first right TTG and of the second left TTG. Furthermore, more languages learned in life were associated with higher language learning aptitude, opening up questions about the structure-function relationship of the TTGs and language learning, and about how language aptitude and language learning are related.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 1","pages":"14"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659347/pdf/","citationCount":"0","resultStr":"{\"title\":\"Language aptitude is related to the anatomy of the transverse temporal gyri.\",\"authors\":\"Carmen Ramoser, Aileen Fischer, Johanneke Caspers, Niels O Schiller, Narly Golestani, Olga Kepinska\",\"doi\":\"10.1007/s00429-024-02883-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Why is it that some people seem to learn new languages faster and more easily than others? The present study investigates the neuroanatomical basis of language learning aptitude, with a focus on the multiplication pattern of the transverse temporal gyrus/gyri (TTG/TTGs) of the auditory cortex. The size and multiplication pattern of the first TTG (i.e., Heschl's gyrus; HG) and of additional posterior TTGs, when present, are highly variable both between brain hemispheres and individuals. Previous work has shown the multiplication pattern of the TTGs to be related to musical and linguistic abilities. Specifically, one study found that high language learning aptitude correlated with more TTGs in the right hemisphere, even though language functions are generally left-lateralized. In this study, we used the recently developed TASH (Toolbox for the Automated Segmentation of Heschl's Gyrus) and MCAI (Multivariate Concavity Amplitude Index) toolboxes to automatically extract structural (e.g., cortical volume, surface area, thickness) and multiplication pattern measures of the TTGs from 82 MRI scans, and related them to participants' language aptitude scores. In contrast to previous results, we found that higher language aptitude was related to fewer TTGs in the right hemisphere and to greater surface area of the first right TTG and of the second left TTG. Furthermore, more languages learned in life were associated with higher language learning aptitude, opening up questions about the structure-function relationship of the TTGs and language learning, and about how language aptitude and language learning are related.</p>\",\"PeriodicalId\":9145,\"journal\":{\"name\":\"Brain Structure & Function\",\"volume\":\"230 1\",\"pages\":\"14\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659347/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Structure & Function\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00429-024-02883-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-024-02883-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为什么有些人似乎比其他人更快更容易地学习新语言?本研究探讨了语言学习能力的神经解剖学基础,重点研究了听觉皮层颞横回/回(TTG/TTGs)的倍增模式。第一TTG(即Heschl’s gyrus)的大小和增殖模式;HG)和额外的后侧ttg,当存在时,在大脑半球和个体之间是高度可变的。先前的研究表明,ttg的倍增模式与音乐和语言能力有关。具体来说,一项研究发现,高语言学习能力与右半球ttg较多相关,尽管语言功能通常是左偏侧的。在这项研究中,我们使用了最近开发的TASH (Toolbox for the Automated Segmentation of Heschl’s Gyrus)和MCAI (Multivariate Concavity Amplitude Index)工具箱,从82个MRI扫描中自动提取ttg的结构(如皮质体积、表面积、厚度)和乘法模式测量,并将它们与参与者的语言能力倾向得分相关联。与之前的结果相反,我们发现较高的语言能力与右半球较少的TTG和更大的第一个右TTG和第二个左TTG表面积有关。此外,生活中学习的语言越多,语言学习能力越高,这就提出了ttg与语言学习的结构-功能关系,以及语言能力和语言学习之间的关系等问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Language aptitude is related to the anatomy of the transverse temporal gyri.

Why is it that some people seem to learn new languages faster and more easily than others? The present study investigates the neuroanatomical basis of language learning aptitude, with a focus on the multiplication pattern of the transverse temporal gyrus/gyri (TTG/TTGs) of the auditory cortex. The size and multiplication pattern of the first TTG (i.e., Heschl's gyrus; HG) and of additional posterior TTGs, when present, are highly variable both between brain hemispheres and individuals. Previous work has shown the multiplication pattern of the TTGs to be related to musical and linguistic abilities. Specifically, one study found that high language learning aptitude correlated with more TTGs in the right hemisphere, even though language functions are generally left-lateralized. In this study, we used the recently developed TASH (Toolbox for the Automated Segmentation of Heschl's Gyrus) and MCAI (Multivariate Concavity Amplitude Index) toolboxes to automatically extract structural (e.g., cortical volume, surface area, thickness) and multiplication pattern measures of the TTGs from 82 MRI scans, and related them to participants' language aptitude scores. In contrast to previous results, we found that higher language aptitude was related to fewer TTGs in the right hemisphere and to greater surface area of the first right TTG and of the second left TTG. Furthermore, more languages learned in life were associated with higher language learning aptitude, opening up questions about the structure-function relationship of the TTGs and language learning, and about how language aptitude and language learning are related.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Structure & Function
Brain Structure & Function 医学-解剖学与形态学
CiteScore
6.00
自引率
6.50%
发文量
168
审稿时长
8 months
期刊介绍: Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信