Shashank A Anand, Fatih Sogukpinar, Ilya E Monosov
{"title":"唤醒对非人灵长类大脑振荡动态的影响。","authors":"Shashank A Anand, Fatih Sogukpinar, Ilya E Monosov","doi":"10.1093/cercor/bhae473","DOIUrl":null,"url":null,"abstract":"<p><p>Arousal states are thought to influence many aspects of cognition and behavior by broadly modulating neural activity. Many studies have observed arousal-related modulations of alpha (~8 to 15 Hz) and gamma (~30 to 50 Hz) power and coherence in local field potentials across relatively small groups of brain regions. However, the global pattern of arousal-related oscillatory modulation in local field potentials is yet to be fully elucidated. We simultaneously recorded local field potentials in numerous cortical and subcortical regions in the primate brain and assessed oscillatory activity and inter-regional coherence associated with arousal state. In high arousal states, we found a uniquely strong and coherent gamma oscillation between the amygdala and basal forebrain. In low arousal rest-like states, a relative increase in coherence at alpha frequencies was present across sampled brain regions, with the notable exception of the medial temporal lobe. We consider how these patterns of activity may index arousal-related brain states that support the processing of incoming sensory stimuli during high arousal states and memory-related functions during rest.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659775/pdf/","citationCount":"0","resultStr":"{\"title\":\"Arousal effects on oscillatory dynamics in the non-human primate brain.\",\"authors\":\"Shashank A Anand, Fatih Sogukpinar, Ilya E Monosov\",\"doi\":\"10.1093/cercor/bhae473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arousal states are thought to influence many aspects of cognition and behavior by broadly modulating neural activity. Many studies have observed arousal-related modulations of alpha (~8 to 15 Hz) and gamma (~30 to 50 Hz) power and coherence in local field potentials across relatively small groups of brain regions. However, the global pattern of arousal-related oscillatory modulation in local field potentials is yet to be fully elucidated. We simultaneously recorded local field potentials in numerous cortical and subcortical regions in the primate brain and assessed oscillatory activity and inter-regional coherence associated with arousal state. In high arousal states, we found a uniquely strong and coherent gamma oscillation between the amygdala and basal forebrain. In low arousal rest-like states, a relative increase in coherence at alpha frequencies was present across sampled brain regions, with the notable exception of the medial temporal lobe. We consider how these patterns of activity may index arousal-related brain states that support the processing of incoming sensory stimuli during high arousal states and memory-related functions during rest.</p>\",\"PeriodicalId\":9715,\"journal\":{\"name\":\"Cerebral cortex\",\"volume\":\"34 12\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659775/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebral cortex\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cercor/bhae473\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae473","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Arousal effects on oscillatory dynamics in the non-human primate brain.
Arousal states are thought to influence many aspects of cognition and behavior by broadly modulating neural activity. Many studies have observed arousal-related modulations of alpha (~8 to 15 Hz) and gamma (~30 to 50 Hz) power and coherence in local field potentials across relatively small groups of brain regions. However, the global pattern of arousal-related oscillatory modulation in local field potentials is yet to be fully elucidated. We simultaneously recorded local field potentials in numerous cortical and subcortical regions in the primate brain and assessed oscillatory activity and inter-regional coherence associated with arousal state. In high arousal states, we found a uniquely strong and coherent gamma oscillation between the amygdala and basal forebrain. In low arousal rest-like states, a relative increase in coherence at alpha frequencies was present across sampled brain regions, with the notable exception of the medial temporal lobe. We consider how these patterns of activity may index arousal-related brain states that support the processing of incoming sensory stimuli during high arousal states and memory-related functions during rest.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.