{"title":"低温单分子荧光成像。","authors":"Phil Sang Yu, Chae Un Kim, Jong-Bong Lee","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Cryo-fixation techniques, including cryo-electron and cryo-fluorescence microscopy, enable the preservation of biological samples in a near-native state by rapidly freezing them into an amorphous ice phase. These methods prevent the structural distortions often caused by chemical fixation, allowing for high-resolution imaging. At low temperatures, fluorophores exhibit improved properties, such as extended fluorescence lifetimes, reduced photobleaching, and enhanced signal-to-noise ratios, making single-molecule imaging more accurate and insightful. Despite these advantages, challenges remain, including limitations in numerical aperture of objectives and cryo-stage for single-molecule imaging, which can affect photon detection and spatial resolution. Recent advancements at low temperatures have mitigated these issues, achieving resolutions at the nanometer scale. Looking forward, innovations in super-resolution techniques, optimized fluorophores, and Artificial Intelligence (AI)-based data analysis promise to further advance the field, providing deeper insights into biomolecular dynamics and interactions. In this mini-review, we will introduce low-temperature single-molecule fluorescence imaging techniques and discuss future perspectives in this field.</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryogenic Single-molecule Fluorescence Imaging.\",\"authors\":\"Phil Sang Yu, Chae Un Kim, Jong-Bong Lee\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cryo-fixation techniques, including cryo-electron and cryo-fluorescence microscopy, enable the preservation of biological samples in a near-native state by rapidly freezing them into an amorphous ice phase. These methods prevent the structural distortions often caused by chemical fixation, allowing for high-resolution imaging. At low temperatures, fluorophores exhibit improved properties, such as extended fluorescence lifetimes, reduced photobleaching, and enhanced signal-to-noise ratios, making single-molecule imaging more accurate and insightful. Despite these advantages, challenges remain, including limitations in numerical aperture of objectives and cryo-stage for single-molecule imaging, which can affect photon detection and spatial resolution. Recent advancements at low temperatures have mitigated these issues, achieving resolutions at the nanometer scale. Looking forward, innovations in super-resolution techniques, optimized fluorophores, and Artificial Intelligence (AI)-based data analysis promise to further advance the field, providing deeper insights into biomolecular dynamics and interactions. In this mini-review, we will introduce low-temperature single-molecule fluorescence imaging techniques and discuss future perspectives in this field.</p>\",\"PeriodicalId\":9010,\"journal\":{\"name\":\"BMB Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMB Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMB Reports","FirstCategoryId":"99","ListUrlMain":"","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cryo-fixation techniques, including cryo-electron and cryo-fluorescence microscopy, enable the preservation of biological samples in a near-native state by rapidly freezing them into an amorphous ice phase. These methods prevent the structural distortions often caused by chemical fixation, allowing for high-resolution imaging. At low temperatures, fluorophores exhibit improved properties, such as extended fluorescence lifetimes, reduced photobleaching, and enhanced signal-to-noise ratios, making single-molecule imaging more accurate and insightful. Despite these advantages, challenges remain, including limitations in numerical aperture of objectives and cryo-stage for single-molecule imaging, which can affect photon detection and spatial resolution. Recent advancements at low temperatures have mitigated these issues, achieving resolutions at the nanometer scale. Looking forward, innovations in super-resolution techniques, optimized fluorophores, and Artificial Intelligence (AI)-based data analysis promise to further advance the field, providing deeper insights into biomolecular dynamics and interactions. In this mini-review, we will introduce low-temperature single-molecule fluorescence imaging techniques and discuss future perspectives in this field.
期刊介绍:
The BMB Reports (BMB Rep, established in 1968) is published at the end of every month by Korean Society for Biochemistry and Molecular Biology. Copyright is reserved by the Society. The journal publishes short articles and mini reviews. We expect that the BMB Reports will deliver the new scientific findings and knowledge to our readers in fast and timely manner.