Mohan Kavya, Varghese Priyanka, Alan Ranjit Jacob, P Nisha
{"title":"研究水凝胶和油凝胶配比对食品级Bigel的理化特性、微观结构、流变学和质地的影响。","authors":"Mohan Kavya, Varghese Priyanka, Alan Ranjit Jacob, P Nisha","doi":"10.1021/acs.biomac.4c00959","DOIUrl":null,"url":null,"abstract":"<p><p>Bigels are promising technological advancements for application in the food industry, e.g., texture modification, controlled release, bioactive encapsulation, etc. Here, we focus on the fabrication and characterization of food-grade bigels from flaxseed-beeswax oleogel (OG) and pectin hydrogel (HG) under high shear conditions. Bigels were characterized by using FTIR, XRD, DSC, fluorescence microscopy, rheology, and texture analysis. Bigels retained the characteristics of both OG and HG, as evident from the OG's physical colloidal interactions and the HG's H-bonding in the bigel. Microscopic images revealed intricate network structures from both the HG and OG, with an increased OG fraction contributing to better homogeneity. The rheological properties of the bigels were in agreement with the textural attributes, revealing insights into the enhancement of tactile qualities. The synergistic effect of the OG and HG in bigels resulted in improved viscoelasticity and gel strength. Overall, the study helps in a holistic understanding of the interplay between composition and various attributes of bigels.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"2800-2810"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the Influence of Hydrogel and Oleogel Ratios on Physico Chemical Characteristics, Microstructure, Rheology, and Texture of a Food Grade Bigel.\",\"authors\":\"Mohan Kavya, Varghese Priyanka, Alan Ranjit Jacob, P Nisha\",\"doi\":\"10.1021/acs.biomac.4c00959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bigels are promising technological advancements for application in the food industry, e.g., texture modification, controlled release, bioactive encapsulation, etc. Here, we focus on the fabrication and characterization of food-grade bigels from flaxseed-beeswax oleogel (OG) and pectin hydrogel (HG) under high shear conditions. Bigels were characterized by using FTIR, XRD, DSC, fluorescence microscopy, rheology, and texture analysis. Bigels retained the characteristics of both OG and HG, as evident from the OG's physical colloidal interactions and the HG's H-bonding in the bigel. Microscopic images revealed intricate network structures from both the HG and OG, with an increased OG fraction contributing to better homogeneity. The rheological properties of the bigels were in agreement with the textural attributes, revealing insights into the enhancement of tactile qualities. The synergistic effect of the OG and HG in bigels resulted in improved viscoelasticity and gel strength. Overall, the study helps in a holistic understanding of the interplay between composition and various attributes of bigels.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"2800-2810\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c00959\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00959","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
大凝胶是有望应用于食品工业的先进技术,例如质地改性、控释、生物活性封装等。在此,我们重点研究了在高剪切条件下利用亚麻籽-蜂蜡油凝胶(OG)和果胶水凝胶(HG)制备食品级大凝胶并对其进行表征。利用傅立叶变换红外光谱(FTIR)、XRD、DSC、荧光显微镜、流变学和纹理分析对大凝胶进行了表征。从 OG 的物理胶体相互作用和 HG 在 Bigel 中的 H 键作用可以看出,Bigel 保留了 OG 和 HG 的特性。显微图像显示,HG 和 OG 都具有复杂的网络结构,OG 含量的增加有助于提高均匀性。bigels 的流变特性与纹理特性一致,揭示了增强触感的奥秘。OG 和 HG 在 bigels 中的协同作用提高了粘弹性和凝胶强度。总之,这项研究有助于全面了解大果胶成分与各种属性之间的相互作用。
Investigating the Influence of Hydrogel and Oleogel Ratios on Physico Chemical Characteristics, Microstructure, Rheology, and Texture of a Food Grade Bigel.
Bigels are promising technological advancements for application in the food industry, e.g., texture modification, controlled release, bioactive encapsulation, etc. Here, we focus on the fabrication and characterization of food-grade bigels from flaxseed-beeswax oleogel (OG) and pectin hydrogel (HG) under high shear conditions. Bigels were characterized by using FTIR, XRD, DSC, fluorescence microscopy, rheology, and texture analysis. Bigels retained the characteristics of both OG and HG, as evident from the OG's physical colloidal interactions and the HG's H-bonding in the bigel. Microscopic images revealed intricate network structures from both the HG and OG, with an increased OG fraction contributing to better homogeneity. The rheological properties of the bigels were in agreement with the textural attributes, revealing insights into the enhancement of tactile qualities. The synergistic effect of the OG and HG in bigels resulted in improved viscoelasticity and gel strength. Overall, the study helps in a holistic understanding of the interplay between composition and various attributes of bigels.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.