{"title":"Ellagic acid prevents ovariectomy-induced bone loss and attenuates oxidative damage of osteoblasts by activating SIRT1.","authors":"Liwei Guo, Pengcheng Wei, Shijie Li, Lulu Zhou, Yunjie Yan, Duan Li","doi":"10.1007/s11418-024-01859-2","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress has been implicated as a causative factor for the development and progression of osteoporosis(OP). Ellagic acid (EA), a natural polyphenol, presents anti-oxidative and anti-inflammatory properties. However, EA's role and molecular mechanism in osteoblasts have not yet been elucidated. In this study, exogenous supplementation with EA restored the osteoporotic bone defects in ovariectomized (OVX)-induced osteoporotic mice. Also, EA inhibited the H<sub>2</sub>O<sub>2</sub>-induced apoptosis of primary osteoblasts, prevented the production of reactive oxygen species, and restored the bone-forming potential of osteoblasts. Furthermore, EA was revealed to activate Sirtuin1 (SIRT1) and its downstream Nrf2/Heme Oxygenase 1 (HO-1) signaling pathway, and EX527 (a SIRT1 inhibitor) partially counteracted the effect of EA on bone loss. The findings suggest that EA protects against osteoporotic bone loss by activating SIRT1 and its downstream Nrf2/HO-1 signaling pathway, providing novel insights into the potential of EA as a treatment agent for osteoporosis-related bone metabolism diseases.</p>","PeriodicalId":654,"journal":{"name":"Journal of Natural Medicines","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Medicines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11418-024-01859-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
摘要
氧化应激被认为是骨质疏松症(OP)发生和发展的一个致病因素。鞣花酸(EA)是一种天然多酚,具有抗氧化和抗炎特性。然而,EA在成骨细胞中的作用和分子机制尚未阐明。在这项研究中,外源性补充 EA 可恢复卵巢切除(OVX)诱导的骨质疏松小鼠的骨质疏松性骨缺损。此外,EA 还能抑制 H2O2 诱导的原发性成骨细胞凋亡,防止活性氧的产生,并恢复成骨细胞的成骨潜能。此外,EA还能激活Sirtuin1(SIRT1)及其下游的Nrf2/Heme氧化酶1(HO-1)信号通路,而EX527(一种SIRT1抑制剂)能部分抵消EA对骨质流失的影响。研究结果表明,EA通过激活SIRT1及其下游的Nrf2/HO-1信号通路来防止骨质疏松性骨丢失,为EA作为骨质疏松相关骨代谢疾病的治疗药物提供了新的见解。
Ellagic acid prevents ovariectomy-induced bone loss and attenuates oxidative damage of osteoblasts by activating SIRT1.
Oxidative stress has been implicated as a causative factor for the development and progression of osteoporosis(OP). Ellagic acid (EA), a natural polyphenol, presents anti-oxidative and anti-inflammatory properties. However, EA's role and molecular mechanism in osteoblasts have not yet been elucidated. In this study, exogenous supplementation with EA restored the osteoporotic bone defects in ovariectomized (OVX)-induced osteoporotic mice. Also, EA inhibited the H2O2-induced apoptosis of primary osteoblasts, prevented the production of reactive oxygen species, and restored the bone-forming potential of osteoblasts. Furthermore, EA was revealed to activate Sirtuin1 (SIRT1) and its downstream Nrf2/Heme Oxygenase 1 (HO-1) signaling pathway, and EX527 (a SIRT1 inhibitor) partially counteracted the effect of EA on bone loss. The findings suggest that EA protects against osteoporotic bone loss by activating SIRT1 and its downstream Nrf2/HO-1 signaling pathway, providing novel insights into the potential of EA as a treatment agent for osteoporosis-related bone metabolism diseases.
期刊介绍:
The Journal of Natural Medicines is an international journal publishing original research in naturally occurring medicines and their related foods and cosmetics. It covers:
-chemistry of natural products
-biochemistry of medicinal plants
-pharmacology of natural products and herbs, including Kampo formulas and traditional herbs
-botanical anatomy
-cultivation of medicinal plants.
The journal accepts Original Papers, Notes, Rapid Communications and Natural Resource Letters. Reviews and Mini-Reviews are generally invited.