{"title":"弱全纯尖形的Mellin变换的一个类似性质及一个逆定理","authors":"Ö. Imamoḡlu, Y. Martin, Á. Tóth","doi":"10.1112/blms.13163","DOIUrl":null,"url":null,"abstract":"<p>We define an analogue of the classical Mellin transform for vector-valued weakly holomorphic cusp forms for <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mi>L</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>Z</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$SL(2,\\mathbb {Z})$</annotation>\n </semantics></math> and prove a converse theorem for such forms in terms of the new transform. As applications we get converse theorems for scalar valued weakly holomorphic forms for <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mi>L</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>Z</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$SL(2,\\mathbb {Z})$</annotation>\n </semantics></math> as well as <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Γ</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Gamma _0(p)$</annotation>\n </semantics></math> for primes <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3731-3744"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analogue of the Mellin transform for weakly holomorphic cusp forms and a converse theorem\",\"authors\":\"Ö. Imamoḡlu, Y. Martin, Á. Tóth\",\"doi\":\"10.1112/blms.13163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We define an analogue of the classical Mellin transform for vector-valued weakly holomorphic cusp forms for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mi>L</mi>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mi>Z</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$SL(2,\\\\mathbb {Z})$</annotation>\\n </semantics></math> and prove a converse theorem for such forms in terms of the new transform. As applications we get converse theorems for scalar valued weakly holomorphic forms for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mi>L</mi>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mi>Z</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$SL(2,\\\\mathbb {Z})$</annotation>\\n </semantics></math> as well as <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Γ</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\Gamma _0(p)$</annotation>\\n </semantics></math> for primes <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 12\",\"pages\":\"3731-3744\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13163\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13163","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
An analogue of the Mellin transform for weakly holomorphic cusp forms and a converse theorem
We define an analogue of the classical Mellin transform for vector-valued weakly holomorphic cusp forms for and prove a converse theorem for such forms in terms of the new transform. As applications we get converse theorems for scalar valued weakly holomorphic forms for as well as for primes .