Annalisa Acquesta, Pietro Russo, Andrea Di Schino, Giulia Stornelli, Tullio Monetta
{"title":"等离子体电解氧化处理镁稀土合金:低电流密度的影响","authors":"Annalisa Acquesta, Pietro Russo, Andrea Di Schino, Giulia Stornelli, Tullio Monetta","doi":"10.1002/adem.202401480","DOIUrl":null,"url":null,"abstract":"<p>The poor corrosion resistance of magnesium and its alloys can be overcome by developing appropriate surface treatments of these materials. The article explores the impact of using a current density of 15 mA cm<sup>−2</sup>, lower than those considered so far for the plasma electrolytic oxidation treatment of the WE43 earth rare-based magnesium alloy, on process energy consumption as well as on microstructure and corrosion properties of oxide coatings grown on the magnesium alloy. Using a low current density during the treatment certainly means significant energy savings, but also good corrosion resistance compared to the untreated alloy, as demonstrated by electrochemical analyses and a through-hole morphology of the oxide coating, which could be useful for all the applications in which beyond good corrosion resistance a specific surface area is essential.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 23","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202401480","citationCount":"0","resultStr":"{\"title\":\"Plasma Electrolytic Oxidation Treatment on Magnesium Rare Earth Alloy: Effect of Low Current Density\",\"authors\":\"Annalisa Acquesta, Pietro Russo, Andrea Di Schino, Giulia Stornelli, Tullio Monetta\",\"doi\":\"10.1002/adem.202401480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The poor corrosion resistance of magnesium and its alloys can be overcome by developing appropriate surface treatments of these materials. The article explores the impact of using a current density of 15 mA cm<sup>−2</sup>, lower than those considered so far for the plasma electrolytic oxidation treatment of the WE43 earth rare-based magnesium alloy, on process energy consumption as well as on microstructure and corrosion properties of oxide coatings grown on the magnesium alloy. Using a low current density during the treatment certainly means significant energy savings, but also good corrosion resistance compared to the untreated alloy, as demonstrated by electrochemical analyses and a through-hole morphology of the oxide coating, which could be useful for all the applications in which beyond good corrosion resistance a specific surface area is essential.</p>\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":\"26 23\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202401480\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401480\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401480","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
通过对镁及其合金进行适当的表面处理,可以克服镁及其合金耐腐蚀性能差的缺点。本文探讨了等离子体电解氧化处理WE43稀土基镁合金时,电流密度为15 mA cm−2,比目前所考虑的电流密度要低,对工艺能耗以及镁合金表面氧化膜的微观结构和腐蚀性能的影响。在处理过程中使用低电流密度当然意味着显著的节能,但与未经处理的合金相比,也具有良好的耐腐蚀性,正如电化学分析和氧化物涂层的通孔形貌所证明的那样,这对于所有需要良好耐腐蚀性以外的特定表面积的应用都是有用的。
Plasma Electrolytic Oxidation Treatment on Magnesium Rare Earth Alloy: Effect of Low Current Density
The poor corrosion resistance of magnesium and its alloys can be overcome by developing appropriate surface treatments of these materials. The article explores the impact of using a current density of 15 mA cm−2, lower than those considered so far for the plasma electrolytic oxidation treatment of the WE43 earth rare-based magnesium alloy, on process energy consumption as well as on microstructure and corrosion properties of oxide coatings grown on the magnesium alloy. Using a low current density during the treatment certainly means significant energy savings, but also good corrosion resistance compared to the untreated alloy, as demonstrated by electrochemical analyses and a through-hole morphology of the oxide coating, which could be useful for all the applications in which beyond good corrosion resistance a specific surface area is essential.
期刊介绍:
Advanced Engineering Materials is the membership journal of three leading European Materials Societies
- German Materials Society/DGM,
- French Materials Society/SF2M,
- Swiss Materials Federation/SVMT.