{"title":"成对凯勒流形和多稳希格斯束的仓西空间结构","authors":"Takashi Ono","doi":"10.1112/blms.13152","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> be a compact Kähler manifold and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>E</mi>\n <mo>,</mo>\n <msub>\n <mover>\n <mi>∂</mi>\n <mo>¯</mo>\n </mover>\n <mi>E</mi>\n </msub>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(E,\\overline{\\partial }_E,\\theta)$</annotation>\n </semantics></math> be a Higgs bundle over it. We study the structure of the Kuranishi space for the pair <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>E</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(X, E,\\theta)$</annotation>\n </semantics></math> when the Higgs bundle admits a harmonic metric or equivalently when the Higgs bundle is polystable and the Chern classes are 0. Under such assumptions, we show that the Kuranishi space of the pair <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>E</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(X,E,\\theta)$</annotation>\n </semantics></math> is isomorphic to the direct product of the Kuranishi space of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>E</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(E,\\theta)$</annotation>\n </semantics></math> and the Kuranishi space of <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>. Moreover, when <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> is a Riemann surface and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>E</mi>\n <mo>,</mo>\n <msub>\n <mover>\n <mi>∂</mi>\n <mo>¯</mo>\n </mover>\n <mi>E</mi>\n </msub>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(E,\\overline{\\partial }_E,\\theta)$</annotation>\n </semantics></math> is stable and the degree is 0, we show that the deformation of the pair <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>E</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(X,E,\\theta)$</annotation>\n </semantics></math> is unobstructed and calculate the dimension of the Kuranishi space.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3581-3600"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13152","citationCount":"0","resultStr":"{\"title\":\"Structure of the Kuranishi spaces of pairs of Kähler manifolds and polystable Higgs bundles\",\"authors\":\"Takashi Ono\",\"doi\":\"10.1112/blms.13152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> be a compact Kähler manifold and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>,</mo>\\n <msub>\\n <mover>\\n <mi>∂</mi>\\n <mo>¯</mo>\\n </mover>\\n <mi>E</mi>\\n </msub>\\n <mo>,</mo>\\n <mi>θ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(E,\\\\overline{\\\\partial }_E,\\\\theta)$</annotation>\\n </semantics></math> be a Higgs bundle over it. We study the structure of the Kuranishi space for the pair <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>E</mi>\\n <mo>,</mo>\\n <mi>θ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(X, E,\\\\theta)$</annotation>\\n </semantics></math> when the Higgs bundle admits a harmonic metric or equivalently when the Higgs bundle is polystable and the Chern classes are 0. Under such assumptions, we show that the Kuranishi space of the pair <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>E</mi>\\n <mo>,</mo>\\n <mi>θ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(X,E,\\\\theta)$</annotation>\\n </semantics></math> is isomorphic to the direct product of the Kuranishi space of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>,</mo>\\n <mi>θ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(E,\\\\theta)$</annotation>\\n </semantics></math> and the Kuranishi space of <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math>. Moreover, when <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> is a Riemann surface and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>,</mo>\\n <msub>\\n <mover>\\n <mi>∂</mi>\\n <mo>¯</mo>\\n </mover>\\n <mi>E</mi>\\n </msub>\\n <mo>,</mo>\\n <mi>θ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(E,\\\\overline{\\\\partial }_E,\\\\theta)$</annotation>\\n </semantics></math> is stable and the degree is 0, we show that the deformation of the pair <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>E</mi>\\n <mo>,</mo>\\n <mi>θ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(X,E,\\\\theta)$</annotation>\\n </semantics></math> is unobstructed and calculate the dimension of the Kuranishi space.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 12\",\"pages\":\"3581-3600\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13152\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13152\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13152","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设X $X$是一个紧凑的Kähler流形(E,∂¯E,θ) $(E,\overline{\partial }_E,\theta)$是它上面的希格斯束。我们研究了当希格斯束允许一个谐波度规或当希格斯束是多稳态且陈氏类为0时(X, E, θ) $(X, E,\theta)$对的Kuranishi空间的结构。在这样的假设下,我们证明了(X, E, θ) $(X,E,\theta)$对的Kuranishi空间同构于(E,θ) $(E,\theta)$和X的Kuranishi空间$X$。此外,当X $X$是黎曼曲面和(E,∂¯E)时,θ) $(E,\overline{\partial }_E,\theta)$稳定且度为0时,表明(X, E,θ) $(X,E,\theta)$是通畅的,计算Kuranishi空间的维数。
Structure of the Kuranishi spaces of pairs of Kähler manifolds and polystable Higgs bundles
Let be a compact Kähler manifold and be a Higgs bundle over it. We study the structure of the Kuranishi space for the pair when the Higgs bundle admits a harmonic metric or equivalently when the Higgs bundle is polystable and the Chern classes are 0. Under such assumptions, we show that the Kuranishi space of the pair is isomorphic to the direct product of the Kuranishi space of and the Kuranishi space of . Moreover, when is a Riemann surface and is stable and the degree is 0, we show that the deformation of the pair is unobstructed and calculate the dimension of the Kuranishi space.