曲线是代数K(π,1)$ K(\pi,1)$:理论和实践两个方面

IF 0.8 3区 数学 Q2 MATHEMATICS
Christophe Levrat
{"title":"曲线是代数K(π,1)$ K(\\pi,1)$:理论和实践两个方面","authors":"Christophe Levrat","doi":"10.1112/blms.13153","DOIUrl":null,"url":null,"abstract":"<p>We prove that any geometrically connected curve <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> over a field <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> is an algebraic <span></span><math>\n <semantics>\n <mrow>\n <mi>K</mi>\n <mo>(</mo>\n <mi>π</mi>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$K(\\pi,1)$</annotation>\n </semantics></math>, as soon as its geometric irreducible components have nonzero genus. This means that the cohomology of any locally constant constructible étale sheaf of <span></span><math>\n <semantics>\n <mrow>\n <mi>Z</mi>\n <mo>/</mo>\n <mi>n</mi>\n <mi>Z</mi>\n </mrow>\n <annotation>$\\mathbb {Z}/n\\mathbb {Z}$</annotation>\n </semantics></math>-modules, with <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> invertible in <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>, is canonically isomorphic to the cohomology of its corresponding <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\pi _1(X)$</annotation>\n </semantics></math>-module. To this end, we explicitly construct some Galois coverings of <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> corresponding to Galois coverings of the normalisation of its irreducible components. When <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> is finite or algebraically closed, we precisely describe finite quotients of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\pi _1(X)$</annotation>\n </semantics></math> that allow to compute the cohomology groups of the sheaf, and give explicit descriptions of the cup products <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mo>H</mo>\n <mn>1</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mo>H</mo>\n <mn>1</mn>\n </msup>\n <mo>→</mo>\n <msup>\n <mo>H</mo>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\operatorname{H}^1\\times \\operatorname{H}^1\\rightarrow \\operatorname{H}^2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mo>H</mo>\n <mn>1</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mo>H</mo>\n <mn>2</mn>\n </msup>\n <mo>→</mo>\n <msup>\n <mo>H</mo>\n <mn>3</mn>\n </msup>\n </mrow>\n <annotation>$\\operatorname{H}^1\\times \\operatorname{H}^2\\rightarrow \\operatorname{H}^3$</annotation>\n </semantics></math> in étale cohomology in terms of finite group cohomology.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3601-3622"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curves are algebraic \\n \\n \\n K\\n (\\n π\\n ,\\n 1\\n )\\n \\n $K(\\\\pi,1)$\\n : Theoretical and practical aspects\",\"authors\":\"Christophe Levrat\",\"doi\":\"10.1112/blms.13153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that any geometrically connected curve <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> over a field <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> is an algebraic <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>K</mi>\\n <mo>(</mo>\\n <mi>π</mi>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$K(\\\\pi,1)$</annotation>\\n </semantics></math>, as soon as its geometric irreducible components have nonzero genus. This means that the cohomology of any locally constant constructible étale sheaf of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Z</mi>\\n <mo>/</mo>\\n <mi>n</mi>\\n <mi>Z</mi>\\n </mrow>\\n <annotation>$\\\\mathbb {Z}/n\\\\mathbb {Z}$</annotation>\\n </semantics></math>-modules, with <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> invertible in <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>, is canonically isomorphic to the cohomology of its corresponding <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>π</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\pi _1(X)$</annotation>\\n </semantics></math>-module. To this end, we explicitly construct some Galois coverings of <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> corresponding to Galois coverings of the normalisation of its irreducible components. When <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> is finite or algebraically closed, we precisely describe finite quotients of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>π</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\pi _1(X)$</annotation>\\n </semantics></math> that allow to compute the cohomology groups of the sheaf, and give explicit descriptions of the cup products <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mo>H</mo>\\n <mn>1</mn>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mo>H</mo>\\n <mn>1</mn>\\n </msup>\\n <mo>→</mo>\\n <msup>\\n <mo>H</mo>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\operatorname{H}^1\\\\times \\\\operatorname{H}^1\\\\rightarrow \\\\operatorname{H}^2$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mo>H</mo>\\n <mn>1</mn>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mo>H</mo>\\n <mn>2</mn>\\n </msup>\\n <mo>→</mo>\\n <msup>\\n <mo>H</mo>\\n <mn>3</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\operatorname{H}^1\\\\times \\\\operatorname{H}^2\\\\rightarrow \\\\operatorname{H}^3$</annotation>\\n </semantics></math> in étale cohomology in terms of finite group cohomology.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 12\",\"pages\":\"3601-3622\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13153\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13153","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了在域k $k$上的任何几何连通曲线X $X$,只要其几何不可约分量具有非零属,就是一个代数的k (π, 1) $K(\pi,1)$。这意味着Z / n个Z $\mathbb {Z}/n\mathbb {Z}$ -模的任意局部常数可构造的可变模簇的上同调,其中n $n$可逆于k $k$,与π 1 (X) $\pi _1(X)$ -模的上同构。为此,我们明确构造了X $X$的伽罗瓦覆盖对应于其不可约分量的归一化的伽罗瓦覆盖。当k $k$是有限的或代数闭的,我们精确地描述π 1 (X) $\pi _1(X)$的有限商,允许计算轴的上同调群。并给出杯子产物h1 × h1→h2 $\operatorname{H}^1\times \operatorname{H}^1\rightarrow \operatorname{H}^2$和H的明确描述1 × h2→h2 $\operatorname{H}^1\times \operatorname{H}^2\rightarrow \operatorname{H}^3$在有限群上同调中的上同调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curves are algebraic K ( π , 1 ) $K(\pi,1)$ : Theoretical and practical aspects

We prove that any geometrically connected curve X $X$ over a field k $k$ is an algebraic K ( π , 1 ) $K(\pi,1)$ , as soon as its geometric irreducible components have nonzero genus. This means that the cohomology of any locally constant constructible étale sheaf of Z / n Z $\mathbb {Z}/n\mathbb {Z}$ -modules, with n $n$ invertible in k $k$ , is canonically isomorphic to the cohomology of its corresponding π 1 ( X ) $\pi _1(X)$ -module. To this end, we explicitly construct some Galois coverings of X $X$ corresponding to Galois coverings of the normalisation of its irreducible components. When k $k$ is finite or algebraically closed, we precisely describe finite quotients of π 1 ( X ) $\pi _1(X)$ that allow to compute the cohomology groups of the sheaf, and give explicit descriptions of the cup products H 1 × H 1 H 2 $\operatorname{H}^1\times \operatorname{H}^1\rightarrow \operatorname{H}^2$ and H 1 × H 2 H 3 $\operatorname{H}^1\times \operatorname{H}^2\rightarrow \operatorname{H}^3$ in étale cohomology in terms of finite group cohomology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信