{"title":"具有pt对称周期矩阵系数的微分算子的实谱","authors":"Oktay A. Veliev","doi":"10.1002/mana.202300558","DOIUrl":null,"url":null,"abstract":"<p>We study the spectrum of the operator <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> generated by the differential expression of order <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>></mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n&gt;2$</annotation>\n </semantics></math> with the <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>×</mo>\n <mi>m</mi>\n </mrow>\n <annotation>$m\\times m$</annotation>\n </semantics></math> Parity-Time (PT)-symmetric periodic matrix coefficients. The case when <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> are the odd numbers was investigated in [18]. In this paper, we consider the all remained cases: (a) <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> is an odd number and <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> is an even number, (b) <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> is an even number and <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> is an arbitrary positive integer. We find conditions on the coefficients under which in the cases (a) and (b) the spectrum of <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> contains the sets <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mi>∞</mi>\n <mo>,</mo>\n <mo>−</mo>\n <mi>H</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$(-\\infty,-H]$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <mo>∪</mo>\n <mo>[</mo>\n <mi>H</mi>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\cup [H,\\infty)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>[</mo>\n <mi>H</mi>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$[H,\\infty)$</annotation>\n </semantics></math> respectively for some <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$H&gt;0$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4437-4449"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the real spectrum of differential operators with PT-symmetric periodic matrix coefficients\",\"authors\":\"Oktay A. Veliev\",\"doi\":\"10.1002/mana.202300558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the spectrum of the operator <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math> generated by the differential expression of order <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>></mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$n&gt;2$</annotation>\\n </semantics></math> with the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>×</mo>\\n <mi>m</mi>\\n </mrow>\\n <annotation>$m\\\\times m$</annotation>\\n </semantics></math> Parity-Time (PT)-symmetric periodic matrix coefficients. The case when <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> are the odd numbers was investigated in [18]. In this paper, we consider the all remained cases: (a) <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> is an odd number and <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math> is an even number, (b) <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> is an even number and <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math> is an arbitrary positive integer. We find conditions on the coefficients under which in the cases (a) and (b) the spectrum of <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math> contains the sets <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mi>∞</mi>\\n <mo>,</mo>\\n <mo>−</mo>\\n <mi>H</mi>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$(-\\\\infty,-H]$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∪</mo>\\n <mo>[</mo>\\n <mi>H</mi>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\cup [H,\\\\infty)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>[</mo>\\n <mi>H</mi>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$[H,\\\\infty)$</annotation>\\n </semantics></math> respectively for some <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$H&gt;0$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"297 12\",\"pages\":\"4437-4449\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300558\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300558","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了由阶n &gt的微分表达式生成的算子T $T$的谱;2 $n>2$与m × m $m\times m$偶对时间(PT)对称周期矩阵系数。在b[18]中研究了m $m$和n $n$为奇数的情况。本文考虑了所有剩余情况:(a) n $n$是奇数,m $m$是偶数,(b) n $n$是偶数,m $m$是任意正整数。我们找到了在(a)和(b)情况下T的谱$T$包含集合(−∞,−H] $(-\infty,-H]$∪[H,∞)$\cup [H,\infty)$ and [H,∞)$[H,\infty)$分别为H &gt;0 $H>0$。
On the real spectrum of differential operators with PT-symmetric periodic matrix coefficients
We study the spectrum of the operator generated by the differential expression of order with the Parity-Time (PT)-symmetric periodic matrix coefficients. The case when and are the odd numbers was investigated in [18]. In this paper, we consider the all remained cases: (a) is an odd number and is an even number, (b) is an even number and is an arbitrary positive integer. We find conditions on the coefficients under which in the cases (a) and (b) the spectrum of contains the sets and respectively for some .
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index