根据第二代欧洲规范 8 标准的要求,对单层钢筋混凝土预制建筑进行基于目标漂移地震力的设计

IF 4.3 2区 工程技术 Q1 ENGINEERING, CIVIL
Tatjana Isaković
{"title":"根据第二代欧洲规范 8 标准的要求,对单层钢筋混凝土预制建筑进行基于目标漂移地震力的设计","authors":"Tatjana Isaković","doi":"10.1002/eqe.4260","DOIUrl":null,"url":null,"abstract":"<p>Results are presented concerning the force-based design of a wide range of reinforced concrete, single-story precast buildings, considering the requirements of the new Eurocode 8 standard. The relevant criterion defining the cross-sectional dimensions of the columns was the 2% drift limitation. Buildings were designed considering a behavior factor of 3 and a 50% reduction in stiffness corresponding to the gross cross-section. The design evaluation, using a nonlinear pushover analysis, revealed that all the buildings could expect approximately twice the drift considered in the design with significant second-order effects, particularly in very tall columns. The main reasons for large discrepancies between the elastic and nonlinear analyses were the arbitrarily selected behavior factor and the arbitrarily selected reduction in stiffness corresponding to the gross cross-section (the stiffness considered in the design was approximately double what the nonlinear analysis revealed). The analysis revealed that these two quantities are closely correlated. Once the dimensions of the columns had been selected, the force and initial stiffness reduction could not be chosen arbitrarily. Correlations were determined between the column dimensions, theoretical stiffness reduction, seismic force reduction (behavior factor) and second-order effects. From these correlations, a new target-drift force-based design methodology was proposed. All considered buildings were redesigned using the proposed method. The results of the new design and the nonlinear-pushover-based analysis correlated well.</p>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":"54 1","pages":"319-345"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eqe.4260","citationCount":"0","resultStr":"{\"title\":\"Target-drift seismic-force-based design of one-story reinforced concrete precast buildings considering the requirements of the second generation of the Eurocode 8 standard\",\"authors\":\"Tatjana Isaković\",\"doi\":\"10.1002/eqe.4260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Results are presented concerning the force-based design of a wide range of reinforced concrete, single-story precast buildings, considering the requirements of the new Eurocode 8 standard. The relevant criterion defining the cross-sectional dimensions of the columns was the 2% drift limitation. Buildings were designed considering a behavior factor of 3 and a 50% reduction in stiffness corresponding to the gross cross-section. The design evaluation, using a nonlinear pushover analysis, revealed that all the buildings could expect approximately twice the drift considered in the design with significant second-order effects, particularly in very tall columns. The main reasons for large discrepancies between the elastic and nonlinear analyses were the arbitrarily selected behavior factor and the arbitrarily selected reduction in stiffness corresponding to the gross cross-section (the stiffness considered in the design was approximately double what the nonlinear analysis revealed). The analysis revealed that these two quantities are closely correlated. Once the dimensions of the columns had been selected, the force and initial stiffness reduction could not be chosen arbitrarily. Correlations were determined between the column dimensions, theoretical stiffness reduction, seismic force reduction (behavior factor) and second-order effects. From these correlations, a new target-drift force-based design methodology was proposed. All considered buildings were redesigned using the proposed method. The results of the new design and the nonlinear-pushover-based analysis correlated well.</p>\",\"PeriodicalId\":11390,\"journal\":{\"name\":\"Earthquake Engineering & Structural Dynamics\",\"volume\":\"54 1\",\"pages\":\"319-345\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eqe.4260\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Engineering & Structural Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4260\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering & Structural Dynamics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4260","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Target-drift seismic-force-based design of one-story reinforced concrete precast buildings considering the requirements of the second generation of the Eurocode 8 standard

Target-drift seismic-force-based design of one-story reinforced concrete precast buildings considering the requirements of the second generation of the Eurocode 8 standard

Results are presented concerning the force-based design of a wide range of reinforced concrete, single-story precast buildings, considering the requirements of the new Eurocode 8 standard. The relevant criterion defining the cross-sectional dimensions of the columns was the 2% drift limitation. Buildings were designed considering a behavior factor of 3 and a 50% reduction in stiffness corresponding to the gross cross-section. The design evaluation, using a nonlinear pushover analysis, revealed that all the buildings could expect approximately twice the drift considered in the design with significant second-order effects, particularly in very tall columns. The main reasons for large discrepancies between the elastic and nonlinear analyses were the arbitrarily selected behavior factor and the arbitrarily selected reduction in stiffness corresponding to the gross cross-section (the stiffness considered in the design was approximately double what the nonlinear analysis revealed). The analysis revealed that these two quantities are closely correlated. Once the dimensions of the columns had been selected, the force and initial stiffness reduction could not be chosen arbitrarily. Correlations were determined between the column dimensions, theoretical stiffness reduction, seismic force reduction (behavior factor) and second-order effects. From these correlations, a new target-drift force-based design methodology was proposed. All considered buildings were redesigned using the proposed method. The results of the new design and the nonlinear-pushover-based analysis correlated well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earthquake Engineering & Structural Dynamics
Earthquake Engineering & Structural Dynamics 工程技术-工程:地质
CiteScore
7.20
自引率
13.30%
发文量
180
审稿时长
4.8 months
期刊介绍: Earthquake Engineering and Structural Dynamics provides a forum for the publication of papers on several aspects of engineering related to earthquakes. The problems in this field, and their solutions, are international in character and require knowledge of several traditional disciplines; the Journal will reflect this. Papers that may be relevant but do not emphasize earthquake engineering and related structural dynamics are not suitable for the Journal. Relevant topics include the following: ground motions for analysis and design geotechnical earthquake engineering probabilistic and deterministic methods of dynamic analysis experimental behaviour of structures seismic protective systems system identification risk assessment seismic code requirements methods for earthquake-resistant design and retrofit of structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信