非局部临界椭圆问题的多重性结果

IF 0.8 3区 数学 Q2 MATHEMATICS
Said El Manouni, Kanishka Perera
{"title":"非局部临界椭圆问题的多重性结果","authors":"Said El Manouni,&nbsp;Kanishka Perera","doi":"10.1112/blms.13156","DOIUrl":null,"url":null,"abstract":"<p>We prove new multiplicity results for some nonlocal critical growth elliptic problems in bounded domains. More specifically, we show that the problems considered here have arbitrarily many solutions for all sufficiently large values of a certain parameter <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\lambda &gt; 0$</annotation>\n </semantics></math>. In particular, the number of solutions goes to infinity as <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$\\lambda \\rightarrow \\infty$</annotation>\n </semantics></math>. We also give an explicit lower bound on <span></span><math>\n <semantics>\n <mi>λ</mi>\n <annotation>$\\lambda$</annotation>\n </semantics></math> in order to have a given number of solutions. This lower bound is in terms of a sequence of eigenvalues of the associated nonlocal elliptic operator. The proofs are based on an abstract critical point theorem.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3643-3651"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicity results for nonlocal critical elliptic problems\",\"authors\":\"Said El Manouni,&nbsp;Kanishka Perera\",\"doi\":\"10.1112/blms.13156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove new multiplicity results for some nonlocal critical growth elliptic problems in bounded domains. More specifically, we show that the problems considered here have arbitrarily many solutions for all sufficiently large values of a certain parameter <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\lambda &gt; 0$</annotation>\\n </semantics></math>. In particular, the number of solutions goes to infinity as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$\\\\lambda \\\\rightarrow \\\\infty$</annotation>\\n </semantics></math>. We also give an explicit lower bound on <span></span><math>\\n <semantics>\\n <mi>λ</mi>\\n <annotation>$\\\\lambda$</annotation>\\n </semantics></math> in order to have a given number of solutions. This lower bound is in terms of a sequence of eigenvalues of the associated nonlocal elliptic operator. The proofs are based on an abstract critical point theorem.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 12\",\"pages\":\"3643-3651\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13156\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13156","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在有界区域上证明了一类非局部临界增长椭圆型问题的新的多重性结果。更具体地说,我们证明了这里所考虑的问题对于某参数λ &gt的所有足够大的值都有任意多个解;0 $\lambda > 0$。特别地,当λ→∞$\lambda \rightarrow \infty$时,解的个数趋于无穷。我们还给出了λ $\lambda$的显式下界,以便得到给定数量的解。这个下界是用相关的非局部椭圆算子的特征值序列表示的。这些证明是基于一个抽象的临界点定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicity results for nonlocal critical elliptic problems

We prove new multiplicity results for some nonlocal critical growth elliptic problems in bounded domains. More specifically, we show that the problems considered here have arbitrarily many solutions for all sufficiently large values of a certain parameter λ > 0 $\lambda > 0$ . In particular, the number of solutions goes to infinity as λ $\lambda \rightarrow \infty$ . We also give an explicit lower bound on λ $\lambda$ in order to have a given number of solutions. This lower bound is in terms of a sequence of eigenvalues of the associated nonlocal elliptic operator. The proofs are based on an abstract critical point theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信