{"title":"分枝离散估值环上代数的奇异轨迹","authors":"Nawaj KC","doi":"10.1112/blms.13174","DOIUrl":null,"url":null,"abstract":"<p>When <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> is a field, the classical Jacobian criterion computes the singular locus of an equidimensional, finitely generated <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-algebra as the closed subset of an ideal generated by appropriate minors of the so-called Jacobian matrix. Recently, Hochster-Jeffries and Saito have extended this result for algebras over any unramified discrete valuation ring of mixed characteristic via the use of <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-derivations. Motivated by these results, in this paper, we state and prove an analogous Jacobian criterion for algebras over ramified discrete valuation rings of mixed characteristic.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3883-3894"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13174","citationCount":"0","resultStr":"{\"title\":\"Singular loci of algebras over ramified discrete valuation rings\",\"authors\":\"Nawaj KC\",\"doi\":\"10.1112/blms.13174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>When <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> is a field, the classical Jacobian criterion computes the singular locus of an equidimensional, finitely generated <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-algebra as the closed subset of an ideal generated by appropriate minors of the so-called Jacobian matrix. Recently, Hochster-Jeffries and Saito have extended this result for algebras over any unramified discrete valuation ring of mixed characteristic via the use of <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-derivations. Motivated by these results, in this paper, we state and prove an analogous Jacobian criterion for algebras over ramified discrete valuation rings of mixed characteristic.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 12\",\"pages\":\"3883-3894\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13174\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13174\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13174","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Singular loci of algebras over ramified discrete valuation rings
When is a field, the classical Jacobian criterion computes the singular locus of an equidimensional, finitely generated -algebra as the closed subset of an ideal generated by appropriate minors of the so-called Jacobian matrix. Recently, Hochster-Jeffries and Saito have extended this result for algebras over any unramified discrete valuation ring of mixed characteristic via the use of -derivations. Motivated by these results, in this paper, we state and prove an analogous Jacobian criterion for algebras over ramified discrete valuation rings of mixed characteristic.