{"title":"在低功耗边缘设备中执行 CNN 推断模型的可重构粗到细方法","authors":"Auangkun Rangsikunpum, Sam Amiri, Luciano Ost","doi":"10.1049/cdt2/6214436","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Convolutional neural networks (CNNs) have evolved into essential components for a wide range of embedded applications due to their outstanding efficiency and performance. To efficiently deploy CNN inference models on resource-constrained edge devices, field programmable gate arrays (FPGAs) have become a viable processing solution because of their unique hardware characteristics, enabling flexibility, parallel computation and low-power consumption. In this regard, this work proposes an FPGA-based dynamic reconfigurable coarse-to-fine (C2F) inference of CNN models, aiming to increase power efficiency and flexibility. The proposed C2F approach first coarsely classifies related input images into superclasses and then selects the appropriate fine model(s) to recognise and classify the input images according to their bespoke categories. Furthermore, the proposed architecture can be reprogrammed to the original model using partial reconfiguration (PR) in case the typical classification is required. To efficiently utilise different fine models on low-cost FPGAs with area minimisation, ZyCAP-based PR is adopted. Results show that our approach significantly improves the classification process when object identification of only one coarse category of interest is needed. This approach can reduce energy consumption and inference time by up to 27.2% and 13.2%, respectively, which can greatly benefit resource-constrained applications.</p>\n </div>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2/6214436","citationCount":"0","resultStr":"{\"title\":\"A Reconfigurable Coarse-to-Fine Approach for the Execution of CNN Inference Models in Low-Power Edge Devices\",\"authors\":\"Auangkun Rangsikunpum, Sam Amiri, Luciano Ost\",\"doi\":\"10.1049/cdt2/6214436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Convolutional neural networks (CNNs) have evolved into essential components for a wide range of embedded applications due to their outstanding efficiency and performance. To efficiently deploy CNN inference models on resource-constrained edge devices, field programmable gate arrays (FPGAs) have become a viable processing solution because of their unique hardware characteristics, enabling flexibility, parallel computation and low-power consumption. In this regard, this work proposes an FPGA-based dynamic reconfigurable coarse-to-fine (C2F) inference of CNN models, aiming to increase power efficiency and flexibility. The proposed C2F approach first coarsely classifies related input images into superclasses and then selects the appropriate fine model(s) to recognise and classify the input images according to their bespoke categories. Furthermore, the proposed architecture can be reprogrammed to the original model using partial reconfiguration (PR) in case the typical classification is required. To efficiently utilise different fine models on low-cost FPGAs with area minimisation, ZyCAP-based PR is adopted. Results show that our approach significantly improves the classification process when object identification of only one coarse category of interest is needed. This approach can reduce energy consumption and inference time by up to 27.2% and 13.2%, respectively, which can greatly benefit resource-constrained applications.</p>\\n </div>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2/6214436\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cdt2/6214436\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cdt2/6214436","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Reconfigurable Coarse-to-Fine Approach for the Execution of CNN Inference Models in Low-Power Edge Devices
Convolutional neural networks (CNNs) have evolved into essential components for a wide range of embedded applications due to their outstanding efficiency and performance. To efficiently deploy CNN inference models on resource-constrained edge devices, field programmable gate arrays (FPGAs) have become a viable processing solution because of their unique hardware characteristics, enabling flexibility, parallel computation and low-power consumption. In this regard, this work proposes an FPGA-based dynamic reconfigurable coarse-to-fine (C2F) inference of CNN models, aiming to increase power efficiency and flexibility. The proposed C2F approach first coarsely classifies related input images into superclasses and then selects the appropriate fine model(s) to recognise and classify the input images according to their bespoke categories. Furthermore, the proposed architecture can be reprogrammed to the original model using partial reconfiguration (PR) in case the typical classification is required. To efficiently utilise different fine models on low-cost FPGAs with area minimisation, ZyCAP-based PR is adopted. Results show that our approach significantly improves the classification process when object identification of only one coarse category of interest is needed. This approach can reduce energy consumption and inference time by up to 27.2% and 13.2%, respectively, which can greatly benefit resource-constrained applications.
期刊介绍:
IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test.
The key subject areas of interest are:
Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation.
Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance.
Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues.
Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware.
Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting.
Case Studies: emerging applications, applications in industrial designs, and design frameworks.