垂直分解冠层改进北温带森林臭氧沉积化学传输模式预测

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Michael P. Vermeuel, Dylan B. Millet, Delphine K. Farmer, Laurens N. Ganzeveld, Auke J. Visser, Hariprasad D. Alwe, Timothy H. Bertram, Patricia A. Cleary, Ankur R. Desai, Detlev Helmig, Sarah C. Kavassalis, Michael F. Link, Matson A. Pothier, Mj Riches, Wei Wang, Sara Williams
{"title":"垂直分解冠层改进北温带森林臭氧沉积化学传输模式预测","authors":"Michael P. Vermeuel,&nbsp;Dylan B. Millet,&nbsp;Delphine K. Farmer,&nbsp;Laurens N. Ganzeveld,&nbsp;Auke J. Visser,&nbsp;Hariprasad D. Alwe,&nbsp;Timothy H. Bertram,&nbsp;Patricia A. Cleary,&nbsp;Ankur R. Desai,&nbsp;Detlev Helmig,&nbsp;Sarah C. Kavassalis,&nbsp;Michael F. Link,&nbsp;Matson A. Pothier,&nbsp;Mj Riches,&nbsp;Wei Wang,&nbsp;Sara Williams","doi":"10.1029/2024JD042092","DOIUrl":null,"url":null,"abstract":"<p>Dry deposition is the second largest tropospheric ozone (O<sub>3</sub>) sink and occurs through stomatal and nonstomatal pathways. Current O<sub>3</sub> uptake predictions are limited by the simplistic big-leaf schemes commonly used in chemical transport models (CTMs) to parameterize deposition. Such schemes fail to reproduce observed O<sub>3</sub> fluxes over terrestrial ecosystems, highlighting the need for more realistic treatment of surface-atmosphere exchange in CTMs. We address this need by linking a resolved canopy model (1D Multi-Layer Canopy CHemistry and Exchange Model, MLC-CHEM) to the GEOS-Chem CTM and use this new framework to simulate O<sub>3</sub> fluxes over three north temperate forests. We compare results with in situ measurements from four field studies and with standalone, observationally constrained MLC-CHEM runs to test current knowledge of O<sub>3</sub> deposition and its drivers. We show that GEOS-Chem overpredicts observed O<sub>3</sub> fluxes across all four studies by up to 2×, whereas the resolved-canopy models capture observed diel profiles of O<sub>3</sub> deposition and in-canopy concentrations to within 10%. Relative humidity and solar irradiance are strong O<sub>3</sub> flux drivers over these forests, and uncertainties in those fields provide the largest remaining source of model deposition biases. Flux partitioning analysis shows that: (a) nonstomatal loss accounts for 60% of O<sub>3</sub> deposition on average; (b) in-canopy chemistry makes only a small contribution to total O<sub>3</sub> fluxes; and (c) the CTM big-leaf treatment overestimates O<sub>3</sub>-driven stomatal loss and plant phytotoxicity in these temperate forests by up to 7×. Results motivate the application of fully online vertically explicit canopy schemes in CTMs for improved O<sub>3</sub> predictions.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"129 24","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD042092","citationCount":"0","resultStr":"{\"title\":\"A Vertically Resolved Canopy Improves Chemical Transport Model Predictions of Ozone Deposition to North Temperate Forests\",\"authors\":\"Michael P. Vermeuel,&nbsp;Dylan B. Millet,&nbsp;Delphine K. Farmer,&nbsp;Laurens N. Ganzeveld,&nbsp;Auke J. Visser,&nbsp;Hariprasad D. Alwe,&nbsp;Timothy H. Bertram,&nbsp;Patricia A. Cleary,&nbsp;Ankur R. Desai,&nbsp;Detlev Helmig,&nbsp;Sarah C. Kavassalis,&nbsp;Michael F. Link,&nbsp;Matson A. Pothier,&nbsp;Mj Riches,&nbsp;Wei Wang,&nbsp;Sara Williams\",\"doi\":\"10.1029/2024JD042092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dry deposition is the second largest tropospheric ozone (O<sub>3</sub>) sink and occurs through stomatal and nonstomatal pathways. Current O<sub>3</sub> uptake predictions are limited by the simplistic big-leaf schemes commonly used in chemical transport models (CTMs) to parameterize deposition. Such schemes fail to reproduce observed O<sub>3</sub> fluxes over terrestrial ecosystems, highlighting the need for more realistic treatment of surface-atmosphere exchange in CTMs. We address this need by linking a resolved canopy model (1D Multi-Layer Canopy CHemistry and Exchange Model, MLC-CHEM) to the GEOS-Chem CTM and use this new framework to simulate O<sub>3</sub> fluxes over three north temperate forests. We compare results with in situ measurements from four field studies and with standalone, observationally constrained MLC-CHEM runs to test current knowledge of O<sub>3</sub> deposition and its drivers. We show that GEOS-Chem overpredicts observed O<sub>3</sub> fluxes across all four studies by up to 2×, whereas the resolved-canopy models capture observed diel profiles of O<sub>3</sub> deposition and in-canopy concentrations to within 10%. Relative humidity and solar irradiance are strong O<sub>3</sub> flux drivers over these forests, and uncertainties in those fields provide the largest remaining source of model deposition biases. Flux partitioning analysis shows that: (a) nonstomatal loss accounts for 60% of O<sub>3</sub> deposition on average; (b) in-canopy chemistry makes only a small contribution to total O<sub>3</sub> fluxes; and (c) the CTM big-leaf treatment overestimates O<sub>3</sub>-driven stomatal loss and plant phytotoxicity in these temperate forests by up to 7×. Results motivate the application of fully online vertically explicit canopy schemes in CTMs for improved O<sub>3</sub> predictions.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":\"129 24\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD042092\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JD042092\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD042092","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

干沉降是第二大对流层臭氧(O3)汇,通过气孔和非气孔途径发生。目前的O3吸收预测受到化学输运模型(CTMs)中常用的参数化沉积的简单大叶方案的限制。这类方案无法重现在陆地生态系统上观测到的臭氧通量,突出表明需要更现实地处理CTMs中的地表-大气交换。为了满足这一需求,我们将一个分解的冠层模型(1D多层冠层化学和交换模型,MLC-CHEM)与GEOS-Chem CTM联系起来,并使用这个新框架模拟了三个北温带森林的O3通量。我们将结果与四个现场研究的原位测量结果以及独立的、观测受限的MLC-CHEM运行进行比较,以测试目前对O3沉积及其驱动因素的了解。我们发现GEOS-Chem在所有四项研究中对观测到的O3通量的预测过高了2倍,而分解的冠层模型捕获了观测到的O3沉积和冠层内浓度的日分布,误差在10%以内。相对湿度和太阳辐照度是这些森林的强O3通量驱动因素,这些领域的不确定性是模式沉积偏差的最大剩余来源。通量分配分析表明:(a)非气孔损失平均占O3沉积的60%;(b)冠层化学对总O3通量的贡献很小;(c) CTM大叶处理对臭氧驱动的气孔损失和植物毒性的高估高达7倍。结果激发了CTMs中完全在线垂直显式冠层方案的应用,以改进O3预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Vertically Resolved Canopy Improves Chemical Transport Model Predictions of Ozone Deposition to North Temperate Forests

A Vertically Resolved Canopy Improves Chemical Transport Model Predictions of Ozone Deposition to North Temperate Forests

Dry deposition is the second largest tropospheric ozone (O3) sink and occurs through stomatal and nonstomatal pathways. Current O3 uptake predictions are limited by the simplistic big-leaf schemes commonly used in chemical transport models (CTMs) to parameterize deposition. Such schemes fail to reproduce observed O3 fluxes over terrestrial ecosystems, highlighting the need for more realistic treatment of surface-atmosphere exchange in CTMs. We address this need by linking a resolved canopy model (1D Multi-Layer Canopy CHemistry and Exchange Model, MLC-CHEM) to the GEOS-Chem CTM and use this new framework to simulate O3 fluxes over three north temperate forests. We compare results with in situ measurements from four field studies and with standalone, observationally constrained MLC-CHEM runs to test current knowledge of O3 deposition and its drivers. We show that GEOS-Chem overpredicts observed O3 fluxes across all four studies by up to 2×, whereas the resolved-canopy models capture observed diel profiles of O3 deposition and in-canopy concentrations to within 10%. Relative humidity and solar irradiance are strong O3 flux drivers over these forests, and uncertainties in those fields provide the largest remaining source of model deposition biases. Flux partitioning analysis shows that: (a) nonstomatal loss accounts for 60% of O3 deposition on average; (b) in-canopy chemistry makes only a small contribution to total O3 fluxes; and (c) the CTM big-leaf treatment overestimates O3-driven stomatal loss and plant phytotoxicity in these temperate forests by up to 7×. Results motivate the application of fully online vertically explicit canopy schemes in CTMs for improved O3 predictions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信